
Collaborative Digital Forensics: Architecture, Mechanisms, and Case Study

by

Michael Kent Mabey

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved July 2011 by the
Graduate Supervisory Committee:

Gail-Joon Ahn, Chair
Stephen S. Yau
Dijiang Huang

ARIZONA STATE UNIVERSITY

August 2011

ABSTRACT

In order to catch the smartest criminals in the world, digital forensics exam-

iners need a means of collaborating and sharing information with each other and out-

side experts that is not prohibitively difficult. However, standard operating procedures

and the rules of evidence generally disallow the use of the collaboration software and

techniques that are currently available because they do not fully adhere to the dictated

procedures for the handling, analysis, and disclosure of items relating to cases.

The aim of this work is to conceive and design a framework that provides a

completely new architecture that 1) can perform fundamental functions that are com-

mon and necessary to forensic analyses, and 2) is structured such that it is possible to

include collaboration-facilitating components without changing the way users interact

with the system sans collaboration. This framework is called the Collaborative Forensic

Framework (CUFF).

CUFF is constructed from four main components: Cuff Link, Storage, Web

Interface, and Analysis Block. With the Cuff Link acting as a mediator between com-

ponents, CUFF is flexible in both the method of deployment and the technologies used

in implementation.

The details of a realization of CUFF are given, which uses a combination of

Java, the Google Web Toolkit, Django with Apache for a RESTful web service, and an

Ubuntu Enterprise Cloud using Eucalyptus. The functionality of CUFF’s components

is demonstrated by the integration of an acquisition script designed for Android OS-

based mobile devices that use the YAFFS2 file system.

While this work has obvious application to examination labs which work under

the mandate of judicial or investigative bodies, security officers at any organization

would benefit from the improved ability to cooperate in electronic discovery efforts

and internal investigations.
i

For my wife, Heidi, who still remains my greatest success story.

ii

ACKNOWLEDGEMENTS

I have truly been blessed to have many wonderful people placed around me

in my life that have helped me in one capacity or another in my efforts to finish this

degree. Saying thank you just doesn’t seem adequate, so I hope it is clear that in saying

it I mean to indicate a much deeper emotion.

First, I want to thank my wife for never giving up on me, for bringing me food

on so many days when I couldn’t leave campus, and believing in me when I had serious

doubts about my abilities to succeed.

To my parents, thank you for letting me grow at my own pace and in my own

way, while instilling in me a high regard for the virtues of a good education and helping

me with boosts of morale and finances when I needed it. To my brother, Dr. Glen

W. Mabey, thank you for being a source of encouragement, motivation, and wisdom

so many times when I needed it, and for setting a good example of hard work and

dedication for me to follow.

To my committee chair, Dr. Gail-Joon Ahn, thank you for being able to see

what I could not so many times, for helping me focus on the next critical step in my

research, for being so approachable, and for being such an easy person to work with.

Dr. Yau and Dr. Huang, thank you for your service on my committee and for expecting

excellence in my work in your classes. To Dr. Chad Mano, thank you for playing such

a critical role in igniting my desire to study computer security, and for being such an

encouraging mentor.

To so many other family members, friends, study partners, classmates, and

teachers, thank you for sharing yourselves with me and helping me grow to become

the person I am today.

iii

TABLE OF CONTENTS

Page

TABLE OF CONTENTS . iv

LIST OF FIGURES . vii

1 INTRODUCTION . 1

1.1 Challenges Related to Digital Forensics 1

1.1.1 Time Inefficiencies . 1

Software Limitations . 1

Size of Evidence Data . 3

Increased Examiner Workload 3

1.1.2 Heterogeneity of Evidence Data 4

1.1.3 Application Domains . 4

1.2 Requirements for a Solution . 5

1.3 Related Work . 8

1.3.1 Forensics . 8

General Digital Forensics . 8

Distributed Processing for Forensics 8

Forensics Standardizations . 9

1.3.2 Storage . 9

2 CUFF: A GENERIC FRAMEWORK . 10

2.1 Objectives of the Framework . 10

2.2 Analysis Block . 10

2.2.1 Analysis Block Controller . 10

2.2.2 Analysis Nodes . 13

2.3 Storage . 13

2.4 User Interface . 14

2.5 Cuff Link . 15

3 REALIZATION AND IMPLEMENTATION 18

iv

Chapter Page
3.1 User Interface . 18

3.1.1 Navigation . 19

3.1.2 Sub-Navigation . 21

3.1.3 Views . 21

3.1.4 Comments . 22

3.2 Cuff Link . 22

3.3 Storage . 23

3.3.1 Coordinator . 24

3.3.2 Storage Space . 25

3.4 Analysis Block . 26

3.4.1 Analysis Block Controller . 26

3.4.2 Analysis Nodes . 28

Node Agents . 29

3.5 Improving Storage Efficiency . 30

3.5.1 DFXML . 30

3.5.2 EDRM XML . 32

3.6 Forensic Tasks . 32

4 CASE STUDY . 37

4.1 YAFFS Acquisition Results . 38

4.1.1 Motivation . 38

4.1.2 Current Method . 39

4.1.3 Limitations of Approach . 42

4.2 Acquisition Flow in CUFF . 43

4.3 Lessons Learned . 47

5 CONCLUSION . 49

5.1 Summary . 49

5.1.1 Contributions . 49

v

Chapter Page
5.2 Future Research . 51

REFERENCES . 53

vi

LIST OF FIGURES

Figure Page

2.1 Overview of CUFF. 11

3.1 The combined major components of CUFF with their various subcompo-

nents shown. 19

3.2 Simple web interface for CUFF. 19

3.3 Multiple organizations can collaborate through the web interface of the

implementation of CUFF. 20

3.4 Inter-component communication through the Cuff Link, which is deployed

in multiple locations to provide the layer of abstraction necessary for the

various components. 23

3.5 The four main tasks in the flow of a digital forensics examination. 33

3.6 The sequence of events for acquiring an image with CUFF. 34

3.7 The sequence of events for analyzing evidence in CUFF. 34

4.1 In AndGrab, the script invokes ADB as a subprocess, which then connects

to and communicates with the device via USB. 41

4.2 Run time of yafCrawl in relation to the average number of chunks per file

object. 41

4.3 Comparison of yafCrawl’s run time per file when calculating checksums

and when not. 41

4.4 The seven steps of acquiring the data from an Android device. 45

4.5 The views pane showing the hex values of the userdata partition from a

Motorola Droid phone. 46

vii

Chapter 1

INTRODUCTION

Computer crime has swiftly evolved into organized, and in some cases state-sponsored,

cyber warfare. Between the Pentagon’s recent declaration “that computer sabotage

coming from another country can constitute an act of war,” [24] and the recent esca-

lation in attacks which have included those launched against Sony [45, 44], the US

Senate [46], Lockheed Martin [28, 49], and other companies [18, 26, 12, 30, 31, 16],

it is very clear that this important issue deserves the attention of the brightest and most

talented security professionals, for certainly there are more attacks to come [25].

1.1 Challenges Related to Digital Forensics

Unfortunately, the digital forensics software solutions used by those combating cyber

crime are too limited to take on the challenges that they will inevitably face as crimes

are committed with emerging technology. Before long, fundamental changes in the

industry will make many of the forensic techniques used today obsolete [22]. In this

critical time, a new approach is needed which is robust enough to meet current and

future demands.

1.1.1 Time Inefficiencies

Although many contributing elements to the problem with forensics software can be

identified, the heart of the problem is that current examinations are too time-inefficient.

The three key factors which contribute to forensic examinations taking too much time

are (i) software limitations, (ii) size of evidence data, and (iii) increased examiner work-

load.

Software Limitations

Single workstation computers have served as the primary tool of our society’s comput-

ing needs for a long time. Not until Foster and Kesselman’s work in 2004 [19] was

the idea of grid computing formalized. Only then were businesses able to take advan-

1

tage of the resources of a large set of computers through computational and storage

management mechanisms.1

Of course, today this technology has advanced to become cloud computing,

which provides Infrastructure-, Platform-, and Software-as-a-Service at an incredible

rate of scalability to a world that finally has the bandwidth necessary to make the of-

fering viable. However, even with cloud computing being met with widespread enthu-

siasm from researchers, developers, and consumers alike, we would do well to remind

ourselves that cloud-based services still have a ways to go before being fully mature,

particularly in the area of digital forensics.

Because single workstations have been the main method of computing for so

long, the majority of software development naturally centered around the use of single

workstations, digital forensic software not excepted. With the evidence data sets being

as large as they are, a single computer simply does not have the resources to deliver

analysis results in a timely manner.

Since forensic analysis techniques depend greatly upon what operating system

and file system the data originally resided, forensic software is typically written to be

used on a small set of popular systems. Because digital forensic labs can be tasked with

analyzing any type of system in existence, a wide range of tools must be purchased to

be prepared for an examination. Even tools which are flexible with the types of systems

they can analyze need to be run on the operating system for which it was compiled. This

problem is of course reduced when a tool is open source, but often such tools lack in

documentation or go long periods of time without being updated.
1Although CPU scavenging and volunteer computing projects like SETI@home were able to exploit

the resources of networked machines across the Internet much earlier than 2004, no toolkit was in exis-
tence that could be used by developers to accomplish such computing distribution on a wide-scale basis
until the Globus Toolkit was created, the effort of which was lead by Ian Foster, Carl Kesselman, and
Steve Tuecke.

2

Size of Evidence Data

Today a 1TB hard drive can be purchased for about $60 and the average hard drive cost

per GB is less than $0.10 [3]. Such low cost makes terabyte-sized systems common-

place among even non-tech-savvy consumers. With such a proliferation of huge storage

systems filled with user data, like the game World of Warcraft: Cataclysm that re-

quires 25GB, examiners are up against a mountain of stored data to work through [42].

Seven years ago, when building a terabyte-class storage system still cost over $800, it

took Roussev and Richard four days to open an 80GB target [42] using FTK [8]. The

problem is compounded when the situation involves a RAID [47], Network Attached

Storage (NAS) unit, or other large storage method that is shared among individuals or

employees.

Increased Examiner Workload

As if insufficient tools and large datasets were not enough, digital crime continues to

increase in popularity [37, 27, 38], naturally resulting in more investigations. Further-

more, state-sponsored cyberwar promotes the development of increasingly sophisti-

cated software. Simply trying to keep up with the latest methods of penetration, exfil-

tration, and attack is insufficient to accommodate the pace of digital crime. In addition,

when cases become backlogged, only those designated as more urgent are worked on,

potentially leaving suspects’ co-conspirators at large, capable of making more victims

out of innocent people.

To complicate things further, although a large number of companies and orga-

nizations have incident response teams working to analyze security breaches, malware

infections, and other security incidents, their findings largely remain private and are

not publicly shared for reasons of reputation maintenance, a lack of suitable conduits

through which such information can be shared in a meaningful way, and because of

legitimate concerns of exposing infrastructure and system information that malicious

3

hackers are constantly seeking to obtain. The result of these conditions is an every-

man-for-himself approach, where organizations essentially analyze the same or similar

incidents many times, independent of each other and the expertise that could be con-

tributed in a joint effort.

1.1.2 Heterogeneity of Evidence Data

In addition to the difficulties arising from the time inefficiencies of contemporary soft-

ware, a second significant contributing element to the problem at hand is the diversity

of devices capable of capturing data and the diversity of the data captured by those

devices. Forensic labs currently need to be equipped with a wide range of software

and equipment to be able to analyze whatever type of device is part of the examination,

which can be quite costly and require separate training for proper operation. Addition-

ally, there are few, if any, methods of automating the detection of any corroboration

between two different types of evidence, e.g. network traffic data, hard drive contents,

et cetera.

Another type of research area that should receive much more attention despite

the tremendous difficulties associated with it is the creation of new abstractions of

forensic data. By this we mean such data as Internet and social network informa-

tion, keystroke fingerprinting [36], and other types of peripheral information that could

significantly improve the credibility and authentication of evidence.

1.1.3 Application Domains

Many important industry sectors could benefit from a secure and robust collaborative

framework with which to perform forensic examinations, but a solution does not cur-

rently exist that can also maintain the rules of evidence. Because of this, examiners

must often resort to methods of sharing information that are can be quite cumbersome

and even prohibitively difficult. For example, sharing a hard drive involved in a case

currently means doing one of two things. Either the providing agency will store the

4

image of the hard drive on a server and set up special access controls for that image so

the other agency can access it, or an exact duplicate of the drive is shipped to the other

location. The security challenges associated with these options are easily apparent.

The most obvious domain for a deployment of a system which solves these

issues is law enforcement, especially considering the high likelihood of an occurrence

similar to the one hypothesized below, where multiple agencies or departments need to

quickly and efficiently share investigative results to catch suspects at large.

Most companies have a great need for forensic services at one point or another.

While it is more economical for some companies to hire the services of outside secu-

rity professionals that have the experience and tools to perform the needed operations,

others have fully staffed incident response teams that need to maintain their own stock

of software and tools. In the case of both the contract security consultants and the in-

cident response teams, the individual professionals have undoubtedly developed their

own scripts and tools when something doesn’t satisfy a specific need. Most common

forensics tools don’t allow much in the way of adding custom scripts.2

1.2 Requirements for a Solution

The thing that would help this situation more than anything else is a secure and ro-

bust infrastructure to facilitate collaborative forensics, which we define as the willful

cooperation between two or more forensic examiners during any step in the forensics

process, for the benefit of sharing specialized knowledge, insight, experience, or tools.

The advantages of collaboration are well known, but two are of particular interest to

us. First, collaboration allows people to draw from others’ expertise, which is invalu-

able when working on problems of a diverse nature or when the problem set of a job

constantly changes. Second, collaboration is a method of spreading a workload, which
2There are at least two tools that do allow for user-created scripts to be used with the tool: Digital

Forensics Framework (DFF) [4] and EnCase [29]. However, DFF is mainly limited to executing com-
mands in an integrated shell or a Python interpreter, and EnCase only supports its own object-oriented
“EnScript” scripting language.

5

results in less time needed for the job to be completed. These two advantages make

collaboration a favored strategy in time-sensitive environments.

Consider the following hypothetical scenario. Past crimes committed by mem-

bers of a white supremacists group have largely been contained to a single state. How-

ever, with a recent expansion of operations to include a higher level of digital organi-

zation and recruiting, the group has begun to spread its activities across multiple states.

In such circumstances, further investigation efforts may call for a combination of state

and federal efforts, where previously only state enforcement was involved. These cir-

cumstances result in investigation files being stored in multiple locations by multiple

agencies, which adds a new layer of complexity to sharing and cross-referencing criti-

cal information relating to this group.

Even in more localized investigation cases, evidence seizure may yield a variety

of digital evidence, such as a mix of Windows, Linux, and Mac computers, cell phones,

GPS devices, gaming consoles, et cetera. Since examiners must be certified to work on

a particular type of evidence (depending on the investigating agency), such a workload

must be split up among personnel. Furthermore, because there is no tool which can

accommodate all evidence types, the evidence presentation lacks uniformity in format

and structure.

While many generic collaboration solutions exist today, none of them have been

crafted specifically for the needs of the digital forensics industry. To be truly effec-

tive, a collaborative forensics infrastructure should maintain the strict privacy and in-

tegrity principles the discipline demands, while also giving examiners the flexibility

to communicate however is best for the situation. For example, when communicat-

ing quick ideas or assignments, text-based messaging may be the natural medium of

choice. However, when more detailed explanations are required which may prompt a

question and answer type of dialog, voice or video conferencing may be better suited.

Whatever the circumstances may be, any communication regarding the case evidence
6

should be logged and remain coupled to the evidence being discussed, both for future

reference and for compliance and integrity checking purposes. This demands a level of

robustness that is simply not offered by collaboration tools at present.

Beyond just communication, collaboration also implies a sharing of resources.

For a proper exchange of data (whether it be files needing to be analyzed or the results

of an analysis), there must first be a uniform representation of that data, and then a

common storage space solution where all collaborators can keep their resources secure.

This will require the establishment of standards to ensure that all parties can access and

interpret the data. Means to efficiently manage resources will also be needed.

If examiners are to collaborate on a large scale, it will also be crucial for this

infrastructure to provide vast amounts of computing power, which is best accomplished

through some distributed processing method. Ideally, a distributed processing solution

would also include scalable resources. Because there is not a single technological solu-

tion that will properly meet this need for all organizations, there must be a generic way

to interface for such processing resources.

To best facilitate collaboration among examiners, a collaborative forensics solu-

tion should not be limited to supporting its use on a small number of operating systems.

This would hinder the collaboration process and may exclude experts who could offer

potentially crucial insight.

As forensic analysis and presentation methods evolve, examiners need to incor-

porate these methods into their digital forensics software tool. Any solution which aims

to have a reasonable lifetime expectancy must be flexible enough to accommodate add-

ons and modifications without undue strain. This also broadens its potential usefulness

in examination tasks that may have been inconceivable at its deployment. Furthermore,

it would allow for the analysis of an arbitrary number of supported file systems, essen-

tially consolidating into one what used to require multiple tools or versions of software

7

to accomplish.

1.3 Related Work

Much research has been conducted which relates directly to the work presented in this

thesis. Here we categorize the works we have reviewed by those related to digital

forensics and storage techniques.

1.3.1 Forensics

Digital forensics is a complex discipline, with many different areas of interest to re-

searchers. Three of these areas include general approaches to difficult forensics tasks,

using distributed processing to improve forensics analysis performance, and creating

standards for the digital forensics science.

General Digital Forensics

Two challenging types of evidence that forensics examiners need to be able to analyze

at times are Redundant Array of Independent Disks (RAID) storage systems and drives

protected with encryption. In [47], Urias and Liebrock attempted to use a parallel

analysis system on RAID storage systems, and documented the issues and challenges

they faced with that approach. Similarly, multiple methods of properly handling the

challenges presented by encrypted drives have been presented by Casey and Stellatos

in [15] and by Altheide et al. in [13].

Distributed Processing for Forensics

With distributed processing in use so much today and in so many distinct settings, it

is natural to think of using it to divide the workload of digital forensics processing.

Several years ago, when the use of distributed processing was not yet as common as it

is today, Roussev and Richard proposed a method for moving away from single work-

station processing for forensic examination to a distributed environment [42]. A few

years later, Liebrock et al. proposed improvements upon Roussev and Richard’s system

in [32], which introduced a decoupled front-end to a parallel analysis machine.

8

In [43], Scanlon and Kechadi introduced a method for remotely acquiring foren-

sic copies of suspect evidence which transfers the contents of a drive over a secure In-

ternet connection to a central evidence server. While this effort is a step for the better

in terms of making evidence centrally accessible, it is difficult to see the direct utility

of such an approach without accompanying software or analysis techniques to take ad-

vantage of storing the evidence on a server. Furthermore, the presented approach relies

on either using the suspect’s Internet connection to upload the image or images, or the

use of a mobile broadband connection. Given the relatively abysmal upload speeds for

current mobile broadband when dealing with data sets that are hundreds of gigabytes or

even a few terabytes large, this approach will continue to be prohibitively inadequate.

Forensics Standardizations

Garfinkel has made great efforts to create standards to improve the overall digital foren-

sic examination process. Garfinkel et al. presented the details of a forensic corpora

in [21] with the purpose of giving researchers a systematic way to measure and test

their tools. Garfinkel took this a step further in [23] with his work to represent file sys-

tem metadata with XML. Finally, in [22] Garfinkel put forth a challenge to researchers

and developers everywhere to take note of the current industry trends and take them

head on with innovative forensic solutions that match the properties of emerging tech-

nologies.

1.3.2 Storage

Since our realization of our framework is built upon a cloud, we also consider work

done by researchers to address some of the issues related to shared storage in a cloud.

Du et al. proposed an availability prediction scheme for sharable objects, such as data

files or software components, for multi-tenanted systems in [17]. In [48], Wang et al.

introduced a middleware solution to improve shared IO performance with Amazon Web

Services [1]. Increasing the security of the data stored in a cloud has been improved

upon by Liu et al. in [33] and by Zhao et al. in [50].
9

Chapter 2

CUFF: A GENERIC FRAMEWORK

Based on the features and requirements necessary to achieve collaborative forensics

as enumerated in Chapter 1, this chapter describes our framework, called the Collab-

orative Forensic Framework (CUFF), and elaborates what mechanisms are needed to

facilitate these features [34]. Our purpose in doing this is to set a standard for the nec-

essary components of any implementation of the framework, regardless of the tools or

technologies available at the time of implementation.

2.1 Objectives of the Framework

Our framework consists of four core components that (i) mediate communication be-

tween components in the system, (ii) coordinate the distributed analysis processing,

(iii) maintain the shared storage space, and (iv) provide a basic interface to the system

for the user interface. Figure 2.1 gives an overview of how these components relate

to each other. While a precise set of application programming interfaces (APIs) for

these four components may vary for the deployment setting, they should always fulfill

specific foundational operations and always have the same basic interactions with the

other components. We now discuss these two objectives in context of each component.

2.2 Analysis Block

The Analysis Block is the workhorse of the system, and all other components are simply

in place to either provide an interface to it, or to facilitate its proper function. The

Analysis Block includes an Analysis Block Controller (ABC) as well as all processing

resources, divided into independently functional units to which we refer by the term

“nodes.”

2.2.1 Analysis Block Controller

The ABC performs two critical roles. First, it manages a queue of analysis requests, or

“jobs.” Jobs can be initiated by either the user or the system. An example scenario of

10

(a) The Cuff Link provides the means for
inter-system communication.

(b) Multiple deployments of
CUFF can communicate with
each other through the Cuff
Link.

Figure 2.1: Overview of CUFF.

when the system might create an analysis job would be when a new evidence image is

uploaded to the Storage component, it may be marked as needing some general analyses

performed on it that is common to all evidence in the system. An example scenario of

when a user would create an analysis job would be when they are browsing the contents

of the evidence and want to have a specific analysis performed on a single file, a group

of files, or all files of a given type, e.g. picture files in JPEG format.

When assigning processing resources a job, the ABC would ideally take into

account both the required computational resources of the job (which can be computed

internally) as well as the criticality level of the case with which the job is associated

(which would need to be entered by the user). For example, if a high-profile case is

opened and input to the system, or if a data set requires analysis by an algorithm that

takes a particularly long time to complete, the jobs associated with these tasks would

be placed closer to the front of the queue. However, the ABC must be flexible enough

11

to be able to revise its initial assessment of a job’s placement if, for example, a user

demotes the level of criticality of a job based on evolving circumstances regarding the

case.

Maintaining the queue of jobs and prioritizing their assignment will be a bal-

ancing act between the above two strategies. From the perspective of the user, it may

be more favorable to prioritize based on the criticality of the case of which the evidence

is a part. However, from the perspective of the overall system performance, it may be

more favorable to prioritize based on the load a given request or set of requests will

place on the system’s computational resources. Of course, we do not claim that these

are the only two approaches to prioritizing jobs in the system. Hence, other approaches

may be more suited to accommodating both perspectives or accommodating an entirely

different set of criterion that turn out to be more important.

The second role of the ABC is to balance the processing resources with the

distinct characteristics of the queued jobs. By this we imply two things. First, that

analysis requests will consist of a specified algorithm and a file or group of files on

which the algorithm should be executed. Second, that there may be multiple types of

analysis nodes, each of which provides a distinct set of analysis algorithms that are

compatible with the platform of the node and the other algorithms or tools installed on

it.

Because there will often be a disproportion between the ratio of the requested

algorithms and the ratio of algorithms made available by the instances currently run-

ning, the ABC compensates for such a situation by shutting down a number of running

instances to reclaim resources, and then instantiating new instances of a different node

type which better fit the current “needs” of the system. If the analysis nodes are all

heterogeneous, there will be no need for this feature of the ABC.

12

2.2.2 Analysis Nodes

Depending on the implementation of CUFF, the structure of the analysis nodes may

employ any distributed processing approach. As such, configuring the analysis nodes

introduces many of the same challenges as do other distributed processing models, such

as finding an appropriate way to divide the problem into atomic sub-problems and then

recombine the results into a comprehensible whole. The good news is that in digital

forensics, the majority of analysis algorithms and techniques target either individual

files or fragments of individual files, which provides a natural unit of distribution [42].

Furthermore, the results of such analyses can be stored such that they are associated

with that file, reducing the effort necessary for recombination of results.

2.3 Storage

The Storage component keeps track of all acquired disk images, the analyses of their

contents, comments and notes from users, and all other related information. To do this,

it must accept incoming data streams of acquired disk images, and strictly maintain the

integrity of the data through validation of the original checksums.

Additionally, there will inevitably be a need for each organization using a given

implementation of CUFF to have databases for storing such information as case and

evidence identifiers, user credentials, user aptitude data (e.g. what types of devices and

operating systems a user has been certified to work on), the cases to which each user

has been assigned, and progress information for the analysis of evidence, to name a

few. Managing such information should also be the charge of the Storage component.

Requests will come at a high rate from the processing resources in the Analysis

Block, which will be the dominant source of requests, so the Storage component’s re-

sponse time needs to be controlled. Data, such as analysis results, user comments, and

communications between users, may need their own distinct class method for transfer-

ring to the Storage component, which can be inherited from an interface that gives the
13

standard structure for all system transmissions.

In coordination with whatever access control mechanism is implemented, the

Storage component also maintains strict confidentiality of the data it stores. The Stor-

age component must also be flexible enough to allow temporary and/or limited access

to case data for consulting professionals, allowing them to collaborate with those di-

rectly responsible for the case.

The Storage component should additionally use a standard method for uni-

formly representing the structure of acquired images of all types. Establishing or using

a data representation standard will simplify the transmission of data segments between

components in the system, as well as the transmission between distinct CUFF-enabled

systems. The use of a standard also enables the storage component to verify the accu-

racy of the evidence representation.

2.4 User Interface

The user interface is the access portal to the entire system, which means that all features

implemented in the system need to be coupled with the interface.

The first and most essential of forensic operations is the acquisition of disk im-

ages for their storage in the system. Considering the precision of hardware control

necessary to perform acquisition on evidence, in some implementation environments it

may be unreasonable to expect the framework to directly support this function. How-

ever, the user interface can easily expose a mechanism for uploading the images of the

evidence once it has been acquired.

The user interface component is also responsible for providing the means for

users to communicate and share data and information with each other. While a lot is

implied in this requirement, the degree to which it is supported will determine how

effective the users will be able to collaborate with each other. Since this is the core

objective of CUFF, this element of the user interface demands priority attention.

14

For every distinct analysis algorithm used in the system, there will be an equally

distinct result produced. While establishing a standard way for results to be presented

would be useful and good, not all algorithms will be suited to giving output in a stan-

dardized form, particularly those algorithms that have creative ways of compiling in-

formation for human understanding. The user interface must be flexible for both cases.

2.5 Cuff Link

The Cuff Link is the most important component of CUFF. It plays several key roles

which include mediating communication, validating input, managing the forensics ex-

amination flow, and exposing APIs for the other components in the system.

If CUFF were designed such that each of the components communicated di-

rectly with each other, it would have a relatively high level of coupling, resulting in

greater difficulties in scaling, making modifications to code, and adding new elements

to the system. By introducing the Cuff Link, we add a layer to the system which pro-

vides some degree of abstraction for components to communicate with each other. By

only requiring each component to initially be able to communicate with the Cuff Link,

the necessary implementation is simplified for all other components. The Cuff Link

keeps track of all other components in the system to make this possible.

Because all messages and requests pass through the Cuff Link, it can ensure

that requests are of a valid format before being passed on to the destination component,

which will be either the Storage or Analysis Block component. Naturally, this valida-

tion must be done independently for the Storage and Analysis Block components to be

tailored to their implementation and APIs.

A certain flow of events is associated with a digital forensics examination which

is closely associated with the specific forensic tasks discussed in Section 3.6. First,

when a case is opened, it must be evaluated for the types of evidence involved, which

dictates the requisite skill set of the examiner that is to be assigned to the case. Second,

15

an available examiner is assigned to the case. Third, the examiner proceeds to execute

each of the standard forensic tasks, resulting in the extraction of items of interest from

the evidence items. Fourth, the report is finalized and sent to the examiner’s supervisor.

The events in this process can be easily detected because the onset of each step

is so distinct from the preceding step. With the Cuff Link configured to detect these

distinctions, it can create notifications to users in the system according to the current

process phase for each case in which they have a particular role. For example, when a

user logs on, the user interface can present a notification of the new cases to which they

have been assigned. Also, when an examiner completes the report for a case they were

working on, their supervisor can receive a notice of the case’s completion.

Some of the basic APIs that must be exposed by the Cuff Link include the

following:

• User login: The user will be required to login from the user interface. Their cre-

dentials should be forwarded to whatever authentication mechanism is employed

in the implementation.

• Evidence transmission: Since all evidence images are to be stored in the Storage

component, they will need to be transmitted across the system, typically being

initialized from the user interface.

• Analysis request: Multiple requests for some piece of evidence to be analyzed by

the Analysis Block will be made throughout the course of each case’s examina-

tion. These will also typically be initialized from the user interface.

• Analysis results: While using the user interface, users will make many requests

to see the results of the analyses of various pieces of evidence. The retrieval of

this information and its display in a coherent manner to the user are critical to the

usability of the system.

16

These operations are critical to the basic functionality of CUFF and are inde-

pendent of the approach taken to implement the framework.

17

Chapter 3

REALIZATION AND IMPLEMENTATION

In this chapter we describe our efforts at taking CUFF from an abstraction to a us-

able implementation upon which mechanisms can be built to make the system ready

for practical use. The User Interface, Cuff Link, and Analysis Block components are

all deployed as cloud computing virtual machine (VM) instances. While several cloud

architectures exist with many comparable features, we have decided to use Eucalyp-

tus [39] for our implementation of CUFF. Eucalyptus has the benefits of open-source

projects, while also maintaining a high level of compatibility with Amazon’s commer-

cial cloud computing offerings (EC2/S3).

3.1 User Interface

For our initial implementation of a CUFF system, we have used the Google Web Toolkit

(GWT) and the Smart GWT set of widgets to create a simple web interface. Our initial

prototype is shown in Figure 3.2. The web interface has the following key components

which each provide a distinct functionality for the user: the navigation pane, the sub-

navigation pane, the views pane, and the comments pane. In addition, there is a menu

bar at the top with options that do not directly contribute to the user’s ability to analyze

evidence, but are there for convenience in using the system. Once the user logs into

the system and selects a case to work on, each component of the interface is populated

with the appropriate information.

GWT makes it possible to separate the code for sections of a web interface into

what are called composites which are programmed as separate Java classes. Each of

the key components of the interface are their own composites that are then combined in

a wrapper Java class that handles the layout of the components it contains. Using this

approach, it is very simple to program multiple component layouts while reusing the

underlying functional code.

18

Figure 3.1: The combined major components of CUFF with their various subcompo-
nents shown.

Figure 3.2: Simple web interface for CUFF.

3.1.1 Navigation

The navigation pane consists of the entire left side of the interface and includes an

evidence navigation tool and list of contacts within the system. The evidence navigation

tool has a drop down selection list of evidence items associated with the opened case.

Upon selecting one of these evidence items, the web interface signals the web server
19

CUFF System

Cuff Link

Federal Government

Agencies
Local Law Enforcement

Internet

Figure 3.3: Multiple organizations can collaborate through the web interface of the
implementation of CUFF.

to query the Storage server for the item’s file listing. This is returned as a DFXML

file (see Section 3.5.1) which is then parsed by the evidence tree widget, which has

been programmed to understand the tags in the DFXML file and extract hierarchical

information when present.

Also available from the evidence navigation tool’s drop down menu is an option

to “Add evidence item.” Selecting this option displays the evidence upload dialog box,

which is the main method of adding evidence to the system. In the dialog box are

options for the evidence item, including:

1. Evidence item number

2. Location where evidence was obtained

3. Description of evidence

4. Vendor name

5. Model number or serial number

6. Recovery information, including the investigator’s name that recovered it and the

date and time it was taken into custody

20

Each of the above items is necessary for maintaining a proper chain of custody for

evidence, and is a vital part of storing case information.

The list of contacts in the navigation pane is an essential part of the web inter-

face, because it is the component that allows the user to give access to other users in

the system to the items in a case. A user’s contacts are separated by those that already

have access to the currently open case and those that do not. By clicking an “add”

button next to a contact without access, a request can be sent to the supervisor on file

for granting the individual access to the case.

3.1.2 Sub-Navigation

The sub-navigation pane comprises of a grid widget that displays common metadata

for the files in its list, including name, extension, path, size, and time stamps for its

creation, last access, and last modification. Each of these fields is sortable using the

advanced filter tool that is built-in to the Smart GWT grid widget.

If a directory is selected in the navigation pane, all of its non-directory children

(i.e. files) are listed in the sub-navigation pane. When a file is selected in the sub-

navigation pane, its contents are displayed in the currently selected view of the view

pane. If a file is selected in the navigation pane, all of its siblings are listed in the

sub-navigation pane and its contents are sent to the view pane.

3.1.3 Views

The views pane is where the user can actually see a particular file’s contents. Multiple

tabs at the top of the view pane separate the distinct viewing tools available for the

selected file. These tabs will change depending on the type of the file, since different

tools are appropriate for any given file type. For example, an image viewing tool will

not be necessary for a text file containing only ASCII characters. The various viewing

tools can be incorporated into the web interface by use of the FastCGI protocol. With

this approach, customized visualization tools can be added on to the interface without

21

much developer burden or performance cost. For implementation simplicity, the only

view that is currently listed in the views pane is one that displays the contents of the

file in hexadecimal.

3.1.4 Comments

The comments pane is the mechanism by which users can add their comments on a

particular file, directory, or evidence image in a case. It consists of one portion that

displays comments that have previously been logged by users and another for the user

to add a new comment. The list of previous comments is a grid widget that lists the user

that originated the comment, the date and time of the comment, and the first several

words of the comment. The new comment section consists of a rich-text editor and

buttons for clearing the text contents and for submitting the new comment.

3.2 Cuff Link

As stated in Chapter 2, the Cuff Link provides a couple of key functions for the overall

system. It mediates communication, manages the forensics examination flow, validates

input, and exposes an API for the other components. In order to accomplish these goals,

the Cuff Link is not deployed in a single location, but acts as a layer of abstraction in

multiple locations. This is illustrated in Figure 3.4 where elements of the Cuff Link

are running on the actual servers where the Analysis Block component and Storage

component are running.

The first key component of the Cuff Link layer is the implementation of a Rep-

resentational State Transfer (REST) web service on both the Storage and Analysis

Block components. Within the logic of these web services, we are able to perform

the input validation and mediation necessary for other components to access the vari-

ous resources available. Additionally, by adding the appropriate filters to the RESTful

web service on the Storage component, we can manage the forensics examination flow.

More details on this are given in the sections which present the details of the Storage

22

Figure 3.4: Inter-component communication through the Cuff Link, which is deployed
in multiple locations to provide the layer of abstraction necessary for the various com-
ponents.

(Section 3.3) and Analysis Block (Section 3.4) components.

The second key component of the Cuff Link layer is the Domain Name System

(DNS) server. This central component makes it easy for other CUFF components to

send traffic to a specific destination without knowing specific details about the desti-

nation. The component making a request only needs to specify the generic name for

the destination server, such as “http://cuff.storage.example/<RESTful request>.” The

Cuff Link DNS server can then resolve the name to the appropriate server.

3.3 Storage

While the other components we have discussed in this chapter are implemented using

the cloud infrastructure, the storage component in our realization is not. Cloud-based

storage options are certainly viable for a production-ready implementation, but in order

to simplify the proof-of-concept implementation while also demonstrating the flexibil-

ity of our architecture, we instead use a server that provides access to its local storage

resources through the Cuff Link element’s REST web API.

23

3.3.1 Coordinator

It is important to remember that while the details are given here for the mechanisms

which provide the RESTful API to the Storage Coordinator, these details are actually a

part of the Cuff Link layer.

The RESTful Storage Coordinator runs an Apache web server alongside the

Django [5] web framework and the Django REST Framework [6]. Django offers fast

and easy deployment through use of the Python language, while also being flexible in

how HTTP requests are handled. This functionality is extended with the Django REST

Framework, that allows for building “well-connected, self-describing RESTful Web

APIs.”

The Django REST Framework is extremely verbose in terms of allowing a de-

veloper to customize how the server responds to GET requests. This is accomplished

by specifying what are called “URL configurations” that tell a dispatcher which Python

module should handle a given request. For example, we specify in the URL configura-

tion of the coordinator that all requests matching the following pattern should be sent

to the CaseListing module:

urlpat = patterns(r‘^listing/(?P<case>[-.\w]{1,64})), ‘cuff_ds.

CaseListing’)

The command above uses a regular expression to tell Django that for any GET

requests that begin with listing/ and then have a sequence of characters that fol-

lows, it should save the matching text and send it as the case parameter to the get()

method of the CaseListing object in the cuff ds package. This is an important de-

tail, because it allows the Storage Controller to have incredible flexibility with the way

it handles requests at run time, which is something that could not be accomplished by

simply exposing resources in the Storage Space with the mechanisms native to Apache.
24

For example, a URL to the Storage Coordinator such as

http://cuff.storage.example/listing/2398-56-1-9125

appears to request the file “2398-56-1-9125” (which is a case number) in the folder

“listing” which is located at the root of the web server. With the proper Django code

we can interpret this as a request for the evidence listing for the case number 2398-

56-1-9125. Knowing this we can retrieve the proper file or set of files from whatever

location we have decided to use for such resources. Once again, this shows how CUFF

provides a set of APIs that abstract the details of how a certain component functions

so that other elements only have to be familiar with the established API, and nothing

more.

3.3.2 Storage Space

In our implementation, the total volume of the resources in the Storage Space is small

enough that we can host them on the same server as the Storage Coordinator. Files for

all cases are in a common root directory, with folders for each case named with the

case’s unique identifier. All evidence images and supplemental files are stored in the

case’s folder, including evidence listings, analysis results, and reports. Although not

directly implemented by us, distinct handlers for each type of the above data types can

be exposed using the method described earlier.

Of course, this is not the only way the Storage Space can be implemented. Any

number of methods for storing vast amounts of data can be used, including direct-

attached storage (DAS), network-attached storage (NAS), storage area network (SAN),

or any of the available cloud storage options popular today. With the way we have

abstracted the access of resources with the Storage Controller, the choice of storage

technology will not effect how the rest of the system functions. Furthermore, the inter-

nal hierarchy of files is likewise abstracted, making it possible to use any variation on

this implementation detail as well.
25

3.4 Analysis Block

As stated in the framework specification in Chapter 2, there are two types of compo-

nents that make up the Analysis Block, the Controller and the Nodes. Also, much like

the Storage component described in Section 3.3, the Analysis block has a Cuff Link

element which abstracts access. Here we present the details on each of these features

of the Analysis Block.

3.4.1 Analysis Block Controller

Once again we emphasize that the details given here which pertain to the implemen-

tation of the REST web API for the Analysis Block Controller are actually part of the

Cuff Link layer.

Just as was described in Section 3.3.1, the Analysis Block Controller runs an

Apache web server with Django and the Django web REST framework. The URL

configurations allow for the following types of GET requests:

• Analyze — Indicates an analysis request. The request should follow one of the

following forms:

– http://cuff.analysis.example/analyze/<algorithm/tool ID>/<case

ID>/<item ID>/file/<file ID>

– http://cuff.analysis.example/analyze/<algorithm/tool ID>/<case

ID>/<item ID>/bytes/<start sector>/<end sector>

• Analyze Group — For use with analysis algorithms or tools that are designed

to be used on multiple items simultaneously, which is very different from inde-

pendently analyzing a set of items with the same algorithm or tool. The request

should follow the following form:

26

– http://cuff.analysis.example/groupanalyze/<algorithm/tool ID>/<group

ID>

• Add to Group — Adds an item to a group which can afterward be analyzed

together simultaneously. Group IDs are case-specific. If the group ID given

does not already exist, it will be created. Groups are stored in the organization’s

database. The request should follow one of the following forms:

– http://cuff.analysis.example/groupadd/<case ID>/<group ID>/<item

ID>/file/<file ID>

– http://cuff.analysis.example/groupadd/<case ID>/<group ID>/<item

ID>/bytes/<start sector>/<end sector>

• List Group — Returns a list of the items (by their item ID and file ID or byte run

information) that are currently stored in the specified group. If the group ID does

not already exist, returns an empty list. The request should follow the following

form:

– http://cuff.analysis.example/grouplist/<case ID>/<group ID>

• Remove from Group — Removes an item from the specified group. No change

is made if the group ID, file ID, or byte run information is invalid. The request

should follow one of the following forms:

– http://cuff.analysis.example/groupremove/<case ID>/<group ID>/<item

ID>/file/<file ID>

– http://cuff.analysis.example/groupremove/<case ID>/<group ID>/<item

ID>/bytes/<start sector>/<end sector>

• Progress — Returns the status of an analysis request, which will be either “queued,”

indicating analysis on the item has not yet begun; “processing,” indicating the

item has been sent to an Analysis Node; “complete,” indicating the analysis has
27

terminated successfully; or “unknown,” indicating an erroneous request. The

request should follow one of the following forms:

– http://cuff.analysis.example/progress/<case ID>/<group ID>/<item

ID>/file/<file ID>

– http://cuff.analysis.example/progress/<case ID>/<group ID>/<item

ID>/bytes/<start sector>/<end sector>

Each of the above URL configurations is set to call a Python module that han-

dles the request in the manner specified. For those methods that need evidence item

data, RESTful calls are made to the Storage component before execution. When the

analysis of an item is completed, the results are sent to the Storage component. Hence,

it was not necessary to list a request for the analysis results above, since such requests

are not handled by the Analysis Block.

To demonstrate the feasibility of the Analysis Block’s motivating concepts, our

implementation does not provide the prioritization or ratio balancing features described

in Section 2.2.1. Since we simply needed the Analysis Block to perform some rudi-

mentary analysis, the ABC itself is configured to calculate the checksum of a file and

return the value. This demonstrates the theory behind the concept of having an Anal-

ysis Block fully developed with a distinct controller and set of analysis nodes, without

the overwhelming task of implementing them both completely. Because of this, the in-

formation given on analysis nodes and node agents concern our design if we had been

able to complete the implementation of all components in the system.

3.4.2 Analysis Nodes

The concept of the Analysis Node component is to take advantage of a cloud archi-

tecture’s infrastructure to distribute the load of analyzing portions of evidence across

a large number of virtual machine instances that have analysis tools installed on them.

Nodes are sent a small number of files to process with a specified algorithm or tool.
28

Once the analysis has been performed and the results have been obtained, they are sent

to the Storage component. The method used to store the results depends on their format,

but typically they will be saved as a file in the same location as all the other case data.

A reference to the result is then inserted in the item’s DFXML entry (see Section 3.5.1)

so it can be retrieved easily afterward.

Since it is unreasonable to expect that all tools that examiners will wish to have

available in CUFF will be compatible with each other, either because they are available

for different operating systems or for some other reason, it will be necessary for there to

be multiple VM images created to be Analysis Node instances. These will, of course,

be stored by the cloud’s Eucalyptus Walrus, and can be added, updated, or removed by

the system’s administrator using the commonly available euca-tools package that was

built for performing such operations.

Node Agents

To make a generic way to interface to all analysis algorithms, inter-node communica-

tion and data transfer is handled by agents running on the analysis nodes. Employing

this approach serves as a means to standardize communication protocols without forc-

ing the protocols upon the programs that use them, making the system much more

flexible with the types of analysis programs that can be run on it while maintaining the

philosophy of detail abstraction used all throughout CUFF.

In addition to being uniformly programmed with a standard set of communica-

tion protocols, each distinct analysis node’s agent will be customized to the analysis

programs being hosted on that node type. This allows the agent to store whatever

parameters or arguments necessary to interface with the programs as well as retrieve

the analysis results. Because much of the implementation for these nodes will be the

same for all node types, this improves the ability to support new file systems, operating

systems, analysis algorithms, and so forth.

29

3.5 Improving Storage Efficiency

To aid in improving the efficiency and standardization of how CUFF stores and trans-

mits data, we employ two data representation formats that are both extensions of the

Extensible Markup Language (XML).

3.5.1 DFXML

As with all families of software, the tools available to digital forensic examiners over

the years have been incompatible with each other, using proprietary formatting for

image files and analysis data storage, with the exception of those open-source projects

that have embraced open standards.

Garfinkel’s Digital Forensics XML (DFXML) representation for file system

metadata [23, 20] is an excellent beginning to giving researchers and developers a stan-

dard way of representing and accessing the contents of an imaged drive. The basic

concept is to use an XML file to store the metadata of a disk image, including ad-

dresses and lengths of all “byte runs” (file fragments) on the disk. This XML file can

then be used with the disk image for accessing specific files.

Garfinkel has developed a tool which produces this XML file and named it

“fiwalk”, short for “file and inode walk.” The fiwalk tool depends on the Sleuth Kit

(TSK) [11] for its interaction with the disk or image to be mapped, and is based on

TSK’s data structures. However, fiwalk does eliminate any confusion users may have

about how to set certain options by acting as an abstraction layer in front of TSK.

There are four significant advantages to this approach. The first is tool and

algorithm independence. With the wide availability of XML libraries for popular pro-

gramming languages, virtually any tool can be converted to read this data format. The

second major advantage is the abstraction of low-level storage details. Researchers are

free to develop their analysis algorithms without needing to focus on such things as

30

ensuring they have calculated their byte offsets properly according to the sector size of

the current disk.

Third, distribution of a disk image’s metadata facilitates sharing the image’s

contents since the DFXML file acts as an index, which is small in size compared to the

entire disk image. To use an example from Garfinkel’s work, researchers collaborating

over the Internet can store both the disk images and their DFXML files in a password-

protected directory accessible by all appropriate parties. To access a desired file across

a network, a researcher needs only browse the DFXML files, request the byte runs

associated with the file, and concatenate the results.

The fourth advantage is that the use of an extensible markup allows for the

metadata to be added upon without limitation. This means that any relevant data can

be marked up and inserted with its associated schema URI.

While still an emerging standard, DFXML plays a vital role in the transmission

of file segments between CUFF system components. For our use in CUFF, DFXML

plays a vital role in the transmission of file segments. Since one of the goals of the

system is to distribute the processing workload quickly, files and file segments are

referenced by their byte runs. This enables the analysis nodes to request only those runs

that are to be analyzed in a very concise form, much in the same way that Garfinkel and

his colleagues used it.

In our use of DFXML, we noticed one limitation to Garfinkel’s approach. The

fiwalk script currently only produces a simple Document Type Definition (DTD) spec-

ification for each DFXML document that is derived from a list of tags used during the

document’s creation and is inserted at the beginning of the document. As with any

DTD specification, this does not allow for type validation. Of course this wouldn’t be a

problem if fiwalk was the only program to ever produce a DFXML document from an

image, but this defeats the purpose of publishing an open standard for representing file

31

system metadata.

To help encourage the adoption of DFXML as a standard, we have created an

XML schema detailing tag hierarchy and complex data types. While this schema was

based mostly on the current version of fiwalk at the time of writing (0.6.2), and hence

some of the Sleuth Kit’s data structures, it still allows for the markup to be extended,

and care was taken to specify data types which are sensible for what they are meant to

represent, irrespective of the type of device on which the data originally resided. Using

this schema to validate an image’s file system representation, any digital forensic tool

can reliably use this standard in its interactions with the disk image.

3.5.2 EDRM XML

As a supplement to DFXML, we make use of the Electronic Discovery Reference

Model (EDRM) XML [7], which is a robust and flexible load file format that aids in

data exchange in forensic and e-discovery processes. As files are marked by examiners

for bundling for the final report in CUFF, they are added to an EDRM XML file. Us-

ing this standard format not only helps compatibility between tools, but it also allows

organizations to quickly change the format of their report template without effecting

previously rendered reports, much like changing the CSS documents for a web site.

3.6 Forensic Tasks

The most important feature of our realization is that it accommodates the main tasks of

any digital forensic investigation:

1. Acquisition: Examiners can use an upload tool from the common web interface

while in the lab, and can afterwards access it through the system regardless of

their physical location.

2. Validation: Any forensic tool must be able to guarantee the integrity of files

from the earliest stages of the investigation to the final reporting. Our system

fulfills this requirement through the use of hash values for every device image
32

Figure 3.5: The four main tasks in the flow of a digital forensics examination.

and file before and after every data transmission. This is enforced by the Storage

component and by the node agents.

3. Discrimination: Our system supports the use of discrimination and filter tools,

which can use sets of hashes of known good files, such as the Reference Data

Set provided by the National Institute of Standards and Technology (NIST) [10],

to highlight those files which are unknown, effectively eliminating an extensive

number of files the examiner needs to look at. This feature can be implemented

as an analysis algorithm on a node image.

4. Extraction: As the task which is typically most demanding of examiners’ time,

we have focused on making the features which support extraction as robust as

possible. This is principally supported by the web interface implementation.

5. Reporting: Comparable to contemporary tools, our system allows for users to

generate reports of their findings with comments, as well as maintaining a strict

log of activities any users performed on any of the evidence. This is likely best

implemented as a program on a node image that can parse the case data, anal-

ysis results, and examiner logs and comments, and put them all into a standard

template.

Two of the above tasks, acquisition and analysis, are of particular interest since

they utilize many different components in the system. The sequence in which the dif-

ferent components are accessed and the messages that are exchanged between them are

illustrated in Figures 3.6 and 3.7. We will briefly discuss them both.

33

Upload Client Acquisition Service Storage Controller

Begin transmission request

Organization [and case] identification

Case exists?

Org DB

Yes/NoIf the case does not yet

have a specified storage

location, the storage

component creates one.

Create storage location if necessary

Begin transmission

for all chunks in all images

Transmit image chunk Forward chunk

Send chunk checksumForward checksum

Ready for transmission

Inter-component communication is

all handled by the Cuff Link

Figure 3.6: The sequence of events for acquiring an image with CUFF.

Web Interface ABC

Analysis request

analysis_request(

case_id,

files or sector ranges,

checksum(s),

instance_type,

analysis_type)

Start analysis instance

Analysis Node

Transmission prep

analyze_prep(

checksum,

analysis_type,

sender_ip)

Storage Contoller

Transmission Request

send_file(

file or sector range,

analysis_node_ip)

for each file

Data transfer

Retransmit request

if data does not

match checksum

ResultsAnalysis complete

Update queue

Queue status query

Queue status

Format is

analysis type

dependent.

Figure 3.7: The sequence of events for analyzing evidence in CUFF.

34

When acquiring evidence in CUFF, the user will first invoke the evidence up-

load tool (see Section 3.1.1), select the image file to be uploaded, and input all other

information required to identify the case and evidence item. A class method on the web

server then queries the database belonging to the user’s organization to determine if the

case already exists in the system and has a storage location created, and creates them if

necessary. At this point, the system is ready to begin uploading the evidence image.

The upload tool breaks the image into manageable chunks for transmission,

generates a checksum for each chunk, and uploads it to the storage location. The Stor-

age Controller replies to the upload tool with the checksum of the received chunk,

which tells the upload tool if the upload was successful or if the chunk was corrupted in

transmission and needs to be uploaded again. This process is repeated until all portions

of the image have been successfully transmitted and reassembled, and they generate

the same checksum as the original image.

The process of analyzing evidence portions is typically initialized by the user,

although the system may also mark newly uploaded evidence for general analysis as

well. When the user submits an analysis request, the ABC determines if a running

analysis node instance is suitable for handling the request, and starts a new instance if

necessary. The ABC informs the node that it is to expect the incoming transmission of

evidence for each of the files or byte runs in the batch to be analyzed. The ABC then

requests that the data be sent from the Storage component to the node directly. The

node and the Storage Controller communicate until the data is completely transmitted

with its integrity validated against the stored checksums.

The node then performs the requested analysis on the data, notifies the ABC

that the job is complete (indicating it is available to fulfill other analysis requests), and

transmits the results to the Storage Controller to be added to the data associated with

the case. When the user requests the status of the analysis request at this time, they will

be informed of its completion. The results can then be viewed in the appropriate view
35

tab in the web interface, which fetches them from the Storage component.

36

Chapter 4

CASE STUDY

The nature of our framework does make it difficult to interface with current forensic

tools. But it is the nature of advancing to a new paradigm to have to leave behind en-

trenched practices that are no longer fitting for the circumstances. Thus, for a case study

as to the usability of our framework, we abandoned the idea of attempting to construct

a mechanism whereby we could embed a commercial product like FTK into CUFF.

Such an effort would undoubtedly lead to such complex tasks as reverse-engineering

the software to develop an artificial API for its native functionality. Work of that nature

is simply outside the scope of this work.

Even though the approaches for handling distinct file systems in digital foren-

sics are all specifically formulated to match the properties of that file system, the proce-

dures for acquiring, validating, and analyzing all file systems is the same, as discussed

in Section 3.6. Hence, in terms of CUFF’s ability to facilitate this flow, all file systems

are alike. Instead of choosing a more common file system as part of our case study, we

picked a new and interesting file system that has had relatively little work done on it,

which also demonstrates the flexibility of our system.

Because our case study works with a new file system, it was necessary for us to

first implement an acquisition tool which can retrieve the data stored on the evidence.

This acquisition tool provides the means to perform the first step in the examination

process. The web interface can then be used to perform the rest of the examination

steps. The details of this tool are given below.

While it is clear that acquisition is only the first step in a forensic examination

and therefore distinct in both procedure and complexity from the rest of the examination

process, the acquisition process uses all components of CUFF to get the evidence into

the system, and is thereby a satisfactory beginning evaluation of CUFF’s abilities.

37

4.1 YAFFS Acquisition Results

We now discuss our motivation for this particular case study, followed by the details of

our developed approach and its limitations. Then in Section 4.2 we give an outline of

how the process of evidence acquisition uses all the components of CUFF.

4.1.1 Motivation

The move towards the post-desktop model of pervasive computing is, well, pervasive.

According to a recently released report from comScore on the U.S. mobile subscriber

market share, “74.6 million people in the U.S. owned smartphones during the three

months ending in April 2011, up 13 percent from the three-month period ending in

January 2011” [41]. As a result of such a boom in the market, mobile computing has

been involved and will continue to be involved in various crimes, fulfilling a variety of

functions that include:

1. Storing information that is incidental to the committed crime, such as a suspect’s

contact list

2. Assisting in the commission of a crime, like fraud

3. Being the target of the crime, like identity theft

With relation to mobile smartphone platforms, Google has been the leader for

some time, and currently 36.4% of the total market share is running its Linux-based

Android operating system. We can only hypothesize that statistics for Android devices

collected in evidence seizures would be very similar.

In the field of digital forensics, Android presents an intriguing set of challenges.

First, a common storage option of choice for device manufacturers is NAND flash

memory because of its significant cost advantages. While this isn’t a direct feature of

38

Android, it is a necessary item to consider given the substantial differences relating to

how NAND flash stores data internally [9].

Second, all versions of Android up to 2.3 use Yet Another Flash File System

(YAFFS) [35] as the default file system [40]. YAFFS was created specifically to take

advantage of the unique features of NAND flash memory, and hence is unique in how

it stores and keeps track of files in the system. The majority of forensic tools were not

designed to work with these differences, so new approaches are needed to keep pace

with and anticipate usage trends.

These circumstances have afforded us the opportunity to take part in some of the

first efforts to develop a method for retrieving data off a YAFFS-based mobile device

that is systematic, repeatable, and complies with the rules of evidence to the extent

possible.

4.1.2 Current Method

We have developed a Python script to acquire the data from the internal memory on

Android-based devices that use YAFFS, which we call AndGrab. We recognize that

even though YAFFS is currently the default file system for Android, it is not used on all

current devices, e.g. the Motorola Droid X. Furthermore, Google has announced that,

starting with devices that ship with Android 2.3 “Gingerbread,” YAFFS will be replaced

as the default file system by ext4 [14]. Despite this coming change, our method should

continue to be applicable with very few changes.

Preparations: The first requirement of our acquisition method is to gain root

privileges on the device and to have Busybox installed. Unfortunately, this does alter

the device from the state in which it was when originally collected. However, when new

data is stored in YAFFS21, it is always written to chunks that were previously erased (all
1YAFFS2 is the second version of the file system that was introduced in 2005. It differs from the

original mostly in its adherence to the “write once” requirement of modern NAND flash. YAFFS2 is
backward compatible with YAFFS1.

39

bits set to 1), in which case no previously recoverable data was overwritten. The only

time writing data on the device should ever cause recoverable data to be overwritten is

if the write causes garbage collection to be triggered.

Furthermore, if the suspect had intentionally altered the device to allow for

hiding sensitive data, the device would likely already be rooted, resulting in even less

evidence contamination.

The only remaining requirements of our method are for the acquiring worksta-

tion to have the Android Debug Bridge (ADB) and Python 2.6+ installed. AndGrab

has been written to use ADB’s connection with a connected device. Currently, all com-

mands to the device are sent through ADB and the results are piped back into the script.

Acquisition Method: The first thing AndGrab does is check for the settings

necessary for it to function properly, including the path to ADB and the checksum

algorithms to be used during the verification operations. If it cannot determine these

settings, the user is prompted to input them manually and they are stored for future

executions.

As AndGrab proceeds, it searches for any connected Android devices. If more

than one device is connected, the user is asked to select which should be used. It then

executes commands to determine the mount locations of the storage devices using the

YAFFS file system and begins executing dd commands. As mentioned earlier, the out-

put of all the commands that AndGrab executes are piped from ADB’s stdout back

into the script. In practice, AndGrab takes about 12.5 minutes to run on the origi-

nal Motorola Droid, resulting in images, information, and checksums for 4 partitions

totaling 496.2 MiB.

Another direction we are working on with this project is making it possible

to generate a DFXML representation of a YAFFS file system. Because of the inherent

differences in how data is stored on NAND flash memory (which is used by all Android

40

Figure 4.1: In AndGrab, the script invokes ADB as a subprocess, which then connects
to and communicates with the device via USB.

Figure 4.2: Run time of yafCrawl in re-
lation to the average number of chunks
per file object.

Figure 4.3: Comparison of yafCrawl’s
run time per file when calculating
checksums and when not.

devices), no disk imaging tool can properly handle full disk dumps from the Android

OS. As such, fiwalk cannot generate a representation of the disk image acquired by our

script. However, we have written another script, which we call “yafCrawl,” which gives

partial information about the system in a DFXML format by identifying those chunks

which do not have any information, i.e. are blank.

Performance results are shown in Figures 4.2 and 4.3, and illustrate that as the

average size of files in the image increase, the run time also increases. The ‘userdata’

partition, which is usually 261 MB on a Motorola Droid, took an average of 28.6 sec-

onds to process.

The reason the information “yafCrawl” generates is incomplete is due to the

difficulty in extracting the file system metadata. In other file systems, this is relatively

straightforward, and is easily integrated into the sparse acquisition process. By contrast,

41

YAFFS stores this metadata in the out-of-bounds area in the NAND memory, which is

not typically accessible through the operating system.

4.1.3 Limitations of Approach

Carriage Returns: As we experimented with the first iteration of our script, we found

that the checksums of the original data on the phone and that of the acquired bit stream

didn’t match. Upon further investigation, we discovered that a single carriage return

character (0x0D or ‘\r’) was inserted before any occurrence of the hex sequence 0x0A,

which translates to the newline character or ‘\n’ in ASCII.

Naturally we supposed this to simply be a consequence of piping output from a

Linux-based device to a Windows-based system. So to try to eliminate the corruption,

we used the script in Linux, but the problem persisted. This suggests the corruption

may be due to the libraries ADB uses. We were unable to reach a definite conclusion

on this matter, but we modified our script to remove these inserted values, which then

results in the images generating the same checksums as the original volumes.

Lack of OOB Data: As we discussed earlier, much of the forensically essential

information about the disk structure of a YAFFS system is stored in the out-of-bounds

(OOB) area of the NAND memory. Current methods of extracting this information

rely on using the SD card to dump the information. We are in the early stages of

investigating a promising possibility which will not require the use of the SD card but

will still allow the extraction of this data.

Corruption of “userdata” Partition: While performing various tests on our

script, we noticed that one side effect of executing the necessary commands on the

phone while it is live has been the corruption of several chunks of data in the “user-

data” partition. None of the other partitions failed the validation test after the above

mentioned sanitization process. We were able locate the differing chunks between two

sequential acquisitions, but were still not able to determine the root cause.

42

To put our approach in a different light, one would not think to try and acquire

a forensically sound bit-stream copy of a hard disk using software that had to first be

installed on the hard drive that was to be acquired. Such a practice would not work

in a courtroom because of the obvious corruption of the original data that resided on

the drive. However, with a traditional hard drive, it is possible to physically remove

the drive and isolate it in such a way that data can only be read from the drive and not

written.

Mobile devices do not provide such a convenient way to access the data. The

NAND flash chips are mounted to the circuit board and accessed via a Flash Translation

Layer (FTL) which may or may not communicate accurate information about which

blocks of space are actually occupied by retrievable data since its job is to abstract these

sort of details from whatever is accessing the memory. Furthermore, FTL algorithms

are vendor-specific and may or may not provide an adequate API for exercising the

necessary level of control needed during the acquisition phase.

To further complicate things, many vendors such as Motorola traditionally lock

out users from the boot loader, which would allow access to the device memory without

starting up the operating system. Even if the boot loader of a device can be used for

this purpose, the FTL challenge described above may still prevent an exact copy of the

memory to be made, even if a copy can be verified by a subsequent acquisition that

yields the same checksum values.

Ultimately, it may only be possible for these issues to be solved by device manu-

facturers coming together to establish a verifiable method of creating forensically sound

bit-stream copies of internal flash memory, and then make this information public.

4.2 Acquisition Flow in CUFF

It is important to make clear how this case study as a whole demonstrates the flexibility

and utility of CUFF to facilitate the examination of a new piece of technology such

43

as a YAFFS file system partition. To do this, we now describe the flow of events that

occur during the acquisition process, clearly identifying the roles played by the distinct

components of CUFF. It is also important to note that the flow of events described here

are not peculiar to YAFFS, except for the steps necessary to extract the data off the

device.

Figure 4.4 gives an illustration of the seven steps taken when using AndGrab

with CUFF. The black lines connecting the different elements of the illustration are

meant to indicate the communication channels through which data is sent from one

element to another. The connection between the workstation and the Android device

uses a USB cable as the medium and ADB as the protocol. The connection between the

workstation and the web interface is internal, since the web interface will be displayed

to the examiner on the workstation’s monitor. Connections between the remaining

elements in the figure were previously described in Chapter 3.

Intuitively, the various components of CUFF fulfill their prescribed functions

during the acquisition process. The web interface gives the examiner access to the

components of CUFF which pertain to the current task. During acquisition all com-

ponents of CUFF are utilized and their capabilities are abstracted through the exposed

upload tool. The Cuff Link serves to intermediate the transmission of the acquired

images and to initiate the generation of a DFXML file for the evidence. The Storage

component verifies the integrity of the evidence using the checksum generated from the

acquisition tool and of course stores the images. The Analysis Block helps complete

the acquisition process by generating a DFXML file per the analysis request entered by

the Cuff Link. Once the DFXML file is available, the evidence can be browsed in the

web interface and further analyses of files and byte runs can commence upon requests

entered by the user.

The process of acquisition follows the following steps as enumerated in Fig-

ure 4.4:
44

Workstation

running

AndGrab

Android

Device

ADB

via

USB

CUFF Web

Interface

Upload Tool

Web Server

Cuff Link DNS

ABC Storage

2

1

3

4

56

7

Figure 4.4: The seven steps of acquiring the data from an Android device.

1. The workstation runs AndGrab on the device using ADB over a USB connection.

2. The examiner uses the Upload Tool in the web interface to upload the acquired

partition images.

3. The images are cached on the web server before transmission through the system.

4. The web server queries the Cuff Link DNS Server for cuff.storage.example,

to which it replies with the IP address of the Storage component.

5. The web server transmits the acquired partition images to the Storage compo-

nent. If the seized device is part of an existing case, then information about the

device is added to the existing case data. Otherwise, a new case is created to store

all the information.

6. The Cuff Link recognizes the process of uploading a new evidence item and

queues the acquired device partition images for processing by the Analysis Block

to generate a DFXML file for each of the images.

7. Once the Analysis Block has completed generating the DFXML file for each

image, it is transfered to the Storage component to be stored along with the disk

image it represents.

45

Figure 4.5: The views pane showing the hex values of the userdata partition from a
Motorola Droid phone.

Once the acquisition process has completed, the examiner can then use the web

interface to view the contents of the partitions of the device. For example, Figure 4.5

shows the very beginning of the userdata partition being displayed in the Hex tab of the

views pane. The userdata partition is of particular interest to forensic examiners since

it is the location of nearly all user-generated data.

Earlier we discussed many objectives of CUFF and the challenges it helps to re-

solve, including a shared storage solution for evidence, the ability for examiners to col-

laborate, management and automation of the forensics examination process, providing

a generic interface to processing resources, and maintaining the integrity of evidence

for adherence to the rules of evidence. Having now discussed the flow of events during

acquisition and the roles played by each of the various components of CUFF, it is clear

how CUFF continues to resolve these challenges with relation to the case study.

To overcome the challenge of a shared storage solution, the acquired YAFFS

46

partitions are stored in the Storage component which is shared among examiners with

permission to the case. Examiners may collaborate by adding comments relating to

the files and data recovered from the phone, which CUFF keeps track of by using the

DFXML file of the evidence item. By automatically sending the YAFFS partitions

to the Analysis Block for the creation of the DFXML file, the Cuff Link manages

the examination process and uses the generic analysis interface of the Analysis Block.

Finally, the Storage component maintains the integrity of the evidence by verifying

checksums of the acquired partitions.

4.3 Lessons Learned

Having used CUFF to perform this case study we were able to make some observations

about the framework. First, because of the relatively shallow control that the web inter-

face can exercise over a workstation’s hardware, it may be impossible to rely solely on

CUFF to perform the task of acquisition. So-called “traditional” forensic acquisition

techniques have proven themselves very capable in this regard, and various equipment

has been created for the purpose of protecting evidence integrity during acquisition. In

light of this, CUFF should be looked upon as a compliment to currently established

techniques with respect to acquisition. Of course, this does not take away from the

benefits of collaboration offered by the framework during the other phases of an exam-

ination.

Second, because there are currently no tools for analyzing the evidence acquired

from a YAFFS-based Android device that can be integrated into CUFF, it is difficult to

advance an examination through the next phases of the forensics process. Of course

this is not a shortcoming that is specific to the case study because the case study itself

was the first effort put forth to implement a tool with the specific purpose of integrating

it into CUFF.

Two interesting side-effects of the Android operating system being open-source

and free for manufacturers to use on devices have been the staggering number of dis-
47

tinct devices that use the operating system [2] as well as substantial fragmentation in

the versions of Android installed on devices. Potentially, each distinct device and OS

version combination could use slightly different internal database structures for storing

user data, such as contacts, text messages, email, et cetera. This leads to a need for

analysis tools to be written to support the database structure of a specific set of devices,

potentially necessitating the implementation of several versions of the same analysis

tool.

This brings us to the final limitation of CUFF identified by our case study.

CUFF currently does not have an intuitive method of organizing the tools made avail-

able for a specific type of evidence. If, for example, an examiner were to attempt

examining an Android device that uses a more obscure database structure, it may be

difficult for the examiner to find the correct analysis tools which match that particular

device if it was embedded within a long list of similar analysis tools. It would be quite

advantageous if an intuitive classification mechanism were devised to help separate

analysis tools by their purpose and application to different evidence types. Ideally, part

of the work of separation would be performed by CUFF as it determines or is told by

the examiner exactly what type of device is being worked on, and excluding those tools

which are incompatible.

Despite these slight limitations to our framework, we are satisfied that CUFF

was able to perform as expected in this case study with handling an arbitrary file system

and demonstrating that each of the components of CUFF do provide the services they

were designed to provide.

48

Chapter 5

CONCLUSION

5.1 Summary

As we discussed in Chapter 1, the desktop-model architecture common to current foren-

sics software is incapable of providing a means for examiners to (i) collaborate effi-

ciently with each other, or (ii) perform advanced analyses on large-sized and diverse

evidence. The reason for this deficiency is a combination of the limitations of available

forensics software, a tremendous increase in evidence data size, seemingly monoton-

ically increasing workloads for examiners, and a diverse set of device types that can

hold potentially critical information for the investigation.

Furthermore, the software environment in which examiners now perform their

work makes it prohibitively difficult to collaborate with other experts on a wide-scale

basis. We believe that collaboration is the key to improving the digital forensics process

such that examiners can bring criminals to justice, and that a fundamentally different

forensics software approach is needed to facilitate such collaboration.

5.1.1 Contributions

The work that has been presented here addresses the essential requirements set forth in

Section 1.2 for a framework suitable to facilitate collaborative forensics. CUFF main-

tains the integrity of the data stored in it by verifying checksums of all transmitted con-

tent before and after being sent, and by storing all checksums to ensure integrity con-

tinues to be perpetually maintained. While sophisticated communication mechanisms

were not developed, examiners may record their thoughts and insights on evidence

items such that they are easily accessible to their colleagues working on the same case.

Furthermore, the flexibility of the web interface allows for additional communication

techniques to be integrated into the system.

CUFF facilitates the sharing of all resources by allowing users to give other

49

users access to a case and all items connected thereto. It is also flexible enough that

developers and system administrators can add analysis tools to new or existing analysis

node images, which images can be of any platform as long as the Analysis Node Agent

has been properly configured. By adding tools to the system in this way, developers

share access to their efforts to broaden the toolset available within CUFF. Because

our implementation is built on a cloud, the processing resources used by these tools

are highly scalable, while also taking advantage of distributed processing techniques.

Accessing these analysis resources has been designed to be very generic, supporting a

REST web API through the Cuff Link elements.

As it goes with many software frameworks, the utility of CUFF in a practical

setting will depend a great deal upon the availability and sophistication of analysis tools

that can work within the framework. One advantage to CUFF that helps mitigate this

shortcoming is the fact that forensic examiners can upload the custom analysis tools

they have developed and used over the years and begin to use them in an automated ex-

amination environment, which contributes an improvement to the efficiency of methods

currently in use.

Standard data formats, specifically DFXML and EDRM XML, have been em-

ployed for the storage and reference of evidence items and their associated analysis

results. The use of these standards helps to manage the shared storage space in the

system by making data transmissions concise.

The web interface has been designed to accommodate multiple types of analysis

results through the use of modular web components on the web client and through the

support of FastCGI on the web server. And since our implementation is cloud-based

and hence web-accessible, a new frontier of possibilities open up for examiner use-

cases, including heavy-duty analysis of evidence initiated from a tablet or other form of

web-enabled thin-client. Furthermore, the virtualization provided by cloud computing

has additional exciting possibilities, such as allowing an examiner to:
50

1. Boot a disk image in a highly-controlled environment to perform certain analyses

that can only be done on live instances

2. Use a large number of nodes to distribute the workload of cracking a disk pro-

tected by full-disk encryption

Through the results of our case study, we demonstrate that even a device and

file system that have relatively immature forensics methods developed for them can

be supported by the basic elements of CUFF. Although lacking in detail, a DFXML

file can be generated from the acquired contents of an Android device that have been

uploaded to CUFF, which can then be used to transmit its contents between the system’s

components, populate the navigation pane in the user interface, and reference analysis

results.

The cumulative results of our work will not only aid law enforcement to com-

bine their efforts with other departments and agencies, but can also be of great as-

sistance to IT administrators when complying with e-discovery requests, performing

internal investigations, and providing data recovery support.

5.2 Future Research

As we move forward with our research in this area, there are a number of things we wish

to improve. To be truly useful, our framework will need to have more tools integrated

into it that can be used in the analysis block. For existing tools, this will require the

effort of interfacing the tool with the node agent that will handle sending commands

to the tool and then sending back the results. Other useful tools can also be developed

specifically for CUFF to take advantage of its unique features.

In a live deployment, the solution we used for the storage component will not

be sufficiently responsive, nor will it have the necessary storage capacity. A much more

advanced storage method will need to be employed that can stand up to the demands

of tracking and storing countless disk images of hard drives, flash drives, GPS devices,
51

cell phones, game consoles, and other related media capable of capturing data, plus the

analysis results of all the stored evidence.

Our current implementation does not provide any means of access control be-

cause this was outside the scope of our work. However, like all systems today, CUFF

will need a secure and verbose access control mechanism to keep its resources acces-

sible to only authorized individuals. Since a great deal of quality research has been

conducted in this area, we would refer any who wish to deploy a fully functional ver-

sion of CUFF to other works that have made access control their focus.

Our approach for acquiring data from an Android device does not live up to the

standards met by existing acquisition tools. Even so, the problems with our method

arise from the inherent properties of the type of storage medium used in the device,

which has been a major research challenge for multiple other researchers. We wish

to continue our investigation of other possibilities for a non-destructive acquisition

method for Android. In addition, we would like to begin researching how to build

effective analysis tools for Android that can be used on the acquired data.

52

REFERENCES

[1] Amazon web services. http://aws.amazon.com/.

[2] Comparison of android devices. http://en.wikipedia.org/wiki/List_of_

Android_devices.

[3] Cost of hard drive storage space. http://ns1758.ca/winch/winchest.html.

[4] Digital forensics framework project home page. http://www.digital-

forensic.org/.

[5] Django project home page. https://www.djangoproject.com/.

[6] Django rest framework project home page. http://django-rest-framework.
org/.

[7] The electronic discovery reference model xml project. http://edrm.net/

projects/xml.

[8] Forensic toolkit (ftk). http://accessdata.com.

[9] Memory technology device (mtd) subsystem for linux.

[10] National software reference library. http://www.nsrl.nist.gov/Downloads.
htm.

[11] The sleuth kit (tsk) & autopsy: Open source digital investigation tools.

[12] Google says china disrupting e-mail service. BBC Online http://www.bbc.co.
uk/news/business-12802914, March 2011.

[13] Cory Altheide, Claudio Merloni, and Stefano Zanero. A methodology for the
repeatable forensic analysis of encrypted drives. In EUROSEC ’08: Proceedings
of the 1st European Workshop on System Security, pages 22–26, New York, NY,
USA, 2008. ACM.

[14] Tim Bray. Saving data safely. Android Developers Blog: http://android-

developers.blogspot.com/2010/12/saving-data-safely.html, Decem-
ber 2010.

[15] Eoghan Casey and Gerasimos J. Stellatos. The impact of full disk encryption on
digital forensics. SIGOPS Oper. Syst. Rev., 42(3):93–98, 2008.

53

[16] Robert N. Charette. More cyberattacks or just more media attention? IEEE
Spectrum Online http://spectrum.ieee.org/computing/networks/more-

cyberattacks-or-just-more-media-attention, July 2011.

[17] Juan Du, Xiaohui Gu, and Douglas S. Reeves. Highly available component shar-
ing in large-scale multi-tenant cloud systems. In Proceedings of the 19th ACM
International Symposium on High Performance Distributed Computing, HPDC
’10, pages 85–94, New York, NY, USA, 2010. ACM.

[18] Daniel Emery. Personal data stolen from uk developer codemasters. BBC Online
http://www.bbc.co.uk/news/technology-13731822, June 2011.

[19] I. Foster and C. Kesselman. The grid: blueprint for a new computing infrastruc-
ture. The Morgan Kaufmann Series in Computer Architecture and Design Series.
Elsevier, 2004.

[20] Simson Garfinkel. Aff and aff4: Where we are, where we are going, and why
it matters to you. In Sleuth Kit and Open Source Digital Forensics Conference,
2010.

[21] Simson Garfinkel, Paul Farrell, Vassil Roussev, and George Dinolt. Bringing sci-
ence to digital forensics with standardized forensic corpora. Digital Investigation,
6(Supplement 1):S2–S11, 2009. The Proceedings of the Ninth Annual DFRWS
Conference.

[22] Simson L. Garfinkel. Digital forensics research: The next 10 years. Digital
Investigation, 7(Supplement 1):S64 – S73, 2010. The Proceedings of the Tenth
Annual DFRWS Conference.

[23] S.L. Garfinkel. Automating disk forensic processing with sleuthkit, xml and
python. In IEEE Systematic Approaches to Digital Forensics Engineering, pages
73 –84, May 2009.

[24] Siobhan Gorman and Julian E. Barnes. Cyber combat: Act of
war. Wall Street Journal Online http://online.wsj.com/article/

SB10001424052702304563104576355623135782718.html, May 2011.

[25] Doug Gross. Cia, senate hackers gleefully promise more. CNN On-
line http://www.cnn.com/2011/TECH/web/06/16/cia.hackers.lulzsec/

index.html, June 2011.

54

[26] Mark Hachman. Update: Leak exposes apple ipad emails, ids. PC Maga-
zine Online http://blogs.pcmag.com/securitywatch/2010/06/alleged_

leak_exposes_apple_ipa.php, June 2011.

[27] Kelly Jackson Higgins. Zeus attackers deploy honeypot against researchers, com-
petitors. DarkReading, November 2010.

[28] Nathan Hodge and Ian Sherr. Lockheed martin hit by security
breach. Wall Street Journal Online http://online.wsj.com/

article/SB10001424052702303654804576350083016866022.html?mod=

googlenews_wsj, May 2011.

[29] Guidance Software Inc. Encase forensic. http://www.guidancesoftware.

com/.

[30] Cecilia Kang. Google: Hundreds of gmail accounts hacked, includ-
ing some senior u.s. government officials. Washington Post Online
http://www.washingtonpost.com/blogs/post-tech/post/google-

hundreds-of-gmail-accounts-hacked-including-some-senior-us-

government-officials/2011/06/01/AGgASgGH_blog.html, June 2011.

[31] Yoko Kubota. Sega says 1.3 million users affected by cyber at-
tack. Reuters Onlinehttp://www.reuters.com/article/2011/06/19/us-
sega-hackers-idUSL3E7HJ01520110619, June 2011.

[32] L. M. Liebrock, N. Marrero, D. P. Burton, R. Prine, E. Cornelius, M. Shakamuri,
and V. Urias. A preliminary design for digital forensics analysis of terabyte size
data sets. In SAC ’07: Proceedings of the 2007 ACM symposium on Applied
computing, pages 190–191, New York, NY, USA, 2007. ACM.

[33] Qin Liu, Guojun Wang, and Jie Wu. Efficient sharing of secure cloud storage
services. In Computer and Information Technology (CIT), 2010 IEEE 10th Inter-
national Conference on, pages 922 –929, 292010-july1 2010.

[34] Mike Mabey and Gail-Joon Ahn. Towards collaborative forensics: Preliminary
framework. In Information Reuse and Integration (IRI), 2011 IEEE International
Conference on, 2011.

[35] Charles Manning. How yaffs works. http://www.yaffs.net/how-yaffs-

works-internals, January 2010.

55

[36] R.A. Maxion and K.S. Killourhy. Keystroke biometrics with number-pad input.
In Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International Con-
ference on, pages 201 –210, 28 2010-july 1 2010.

[37] Joseph Menn. Fatal System Error: The Hunt for the New Crime Lords Who are
Bringing Down the Internet. PublicAffairs, first edition, 2010.

[38] Joseph Menn. U.s. experts close in on google hackers. http://www.cnn.com/

2010/BUSINESS/02/21/google.hackers/index.html, February 2010.

[39] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov. The eucalyptus open-source cloud-computing system. In Clus-
ter Computing and the Grid, 2009. CCGRID ’09. 9th IEEE/ACM International
Symposium on, pages 124 –131, May 2009.

[40] Ryan Paul. Ext4 filesystem hits android, no need to fear data loss. Ars Tech-
nica Onlinehttp://arstechnica.com/open-source/news/2010/12/ext4-
filesystem-hits-android-no-need-to-fear-data-loss.ars, January
2011.

[41] PRNewswire. comscore reports april 2011 u.s. mobile subscriber market
share. http://www.prnewswire.com/news-releases/comscore-reports-

april-2011-us-mobile-subscriber-market-share-123098853.html,
June 2011.

[42] Vassil Roussev and Golden G. Richard III. Breaking the performance wall: The
case for distributed digital forensics. In The Proceedings of the Fourth Annual
DFRWS Conference, 2004.

[43] Mark Scanlon and Mohand-Tahar Kechadi. Online Acquisition of Digital Forensic
Evidence, volume Volume 31 of Lecture Notes of the Institute for Computer Sci-
ences, Social Informatics and Telecommunications Engineering, pages 122–131.
Springer Berlin Heidelberg, 2009.

[44] Patrick Seybold. Update on playstation network and qriocity. PlaySta-
tion Blog http://blog.us.playstation.com/2011/04/26/update-on-

playstation-network-and-qriocity/, April 2011.

[45] Ian Sherr. Hackers breach second sony service. Wall
Street Journal Online http://online.wsj.com/article/

SB10001424052748704436004576299491191920416.html?mod=e2tw,
May 2011.

56

[46] CNN Wire Staff. Senate website under review after hacker gains access to
server. CNN Online http://www.cnn.com/2011/POLITICS/06/13/senate.

website.hacked/index.html.

[47] Vincent Urias, Curtis Hash, and Lorie M. Liebrock. Consideration of issues for
parallel digital forensics of raid systems. Journal of Digital Forensic Practice,
2008.

[48] Jianzong Wang, Peter Varman, and Changsheng Xie. Middleware enabled data
sharing on cloud storage services. In Proceedings of the 5th International Work-
shop on Middleware for Service Oriented Computing, MW4SOC ’10, pages 33–
38, New York, NY, USA, 2010. ACM.

[49] Jim Wolf. Lockheed says thwarted ”tenacious” cyber attack. Reuters
Online http://www.reuters.com/article/2011/05/29/us-usa-defense-
lockheed-idUSTRE74S09220110529, May 2011.

[50] Gansen Zhao, Chunming Rong, Jin Li, Feng Zhang, and Yong Tang. Trusted data
sharing over untrusted cloud storage providers. In Cloud Computing Technology
and Science (CloudCom), 2010 IEEE Second International Conference on, pages
97 –103, 302010-dec.3 2010.

57

