
IMPORTANT: Please disable your windows defender or Anti-Malware software before
conducting this exercise as they will determine the files as malware. I recommend you to
create a Windows VM and do this exercise in it like I did in class.

1. This exercise will walk you through the IDA pro demo. First, download the zip file named
‘469_malware_demo.zip’

2. The file contains 4 binaries --- 469, PEiD, upx, and installer for IDA pro 5.

As I demonstrated in class, PEiD is used to read signatures in PE files and to determine whether
the file is obfuscated using a packer.

3. ‘469.exe’ is a program with encrypted criminal’s bank account information. It is your job to
retrieve them.

Let’s first run it and see what it does.

I tried two different passwords, ‘hello’ and ‘openSesame’, but they are both wrong passwords.

4. Before we disassemble the executable and reveal the hidden information, let’s use PEiD to
check the file.

5. Unlike the unpacked binary (i.e., ‘.text’ or ‘.rdata’), the EP Section indicates that it is packed
by a program called UPX. It is a well-known packer for PE files that uses compression.

Let’s unpack it using the ‘upx.exe’ included in the folder.

>> upx.exe -d 469.exe

6. Finally, disassemble the binary using IDA pro. Install IDA Pro using the installer included, or
you can download the latest free version of IDA Pro from https://www.hex-
rays.com/products/ida/

7. When it starts, select ‘PE Executables’ from the options under the ‘Windows’ tab as shown in
the picture above.

Unless you want certain options only, run the analysis by clicking ‘Next’ buttons.

8. You will see a screen like the picture above.

You can see various items from each window. For example:

Names window: lists all known named locations in the program. F is a function, C is
code/instruction, A is a string, D is defined data, etc.

Strings window: lists a list of embedded strings in the program.

IDA View Window: is a disassembly window that shows the program in assembly. It supports
graphical view and text view modes. You can toggle between the two modes using the Space
key.

Hex View Window: dumps the binary into hex.

Move to the beginning of the program by clicking the leftmost blue portion of the bar indicated
in the picture above.

9. You can see the first few instructions of the program.

As you can see the plain text “Please input password:\n” stored in the variable
“aPleaseInputPas” from the picture, this part of the program is the portion simply loads the
program to the stack and asks the user for a password.

Assembly instruction shown by IDA pro follows “intel” syntax:

<instruction> <dst>, <src>: <instruction> is an operator, while <dst> and <src> are operands.

(e.g.) mov ebp, esp: move the value (or address) stored in current stack pointer (esp) to base
pointer (ebp).

Both esp and ebp are registers. Registers are tiny, internal memory of CPU. CPU utilizes
registers to speed up the operations, instead of obtaining data from external memory through
the control bus.

(e.g.) cmp eax, [ebp + var]: compare the value of [ebp + var] (the value of ‘var’ added to that of
‘ebp) and the value of eax (accumulator register, which is used in arithmetic operation).

Another example is:

For more tutorials on assembly and IDA pro, please refer to the following links:

http://www-
verimag.imag.fr/~mounier/Enseignement/Software_Security/BH_Eagle_ida_pro.pdf

https://www.felixcloutier.com/x86/

https://www.tutorialspoint.com/assembly_programming/index.htm

Please stop following the instructions of this document and play around with IDA pro and try to

understand the assembly and have fun😊

https://www.tutorialspoint.com/assembly_programming/index.htm

9. If you scroll down the assembly view window, you will find the branch that determines which
location of the program the control should jump to. It is determined by the two lines in the top
box --- “test eax, eax” and ‘jnz short loc_4010C2”.

10. jnz instruction means “jump if not zero”. If the Zero Flag (ZF) is set to zero, it jumps to the
left block, which prints the hidden information, while the block on the right prints out “Wrong
password” and exits the program as we saw earlier.

Click or select the instruction “jnz” and it will show the byte offset and the hex code of the
instruction in the “Hex View” window.

11. Assembly Window and Hex View Window are by default synced, so the instruction you
selected in the Assembly Window should be highlighted in the Hex View Window, along with
the byte offset in hex of the selected instruction at the bottom left corner (see the picture
above).

The hex code for assembly ‘jnz’ is 75.

Let’s change it to “nop” instruction (No Operation) so it never jump to the part printing out
“Wrong password”.

12. Open the “469.exe” in https://hexed.it to modify. Change the instruction code of “jnz” (75)
at byte offset 0x468 to “nop” (90).

13. Download the modified program and run it.

https://hexed.it/

I used the same passwords (“hello” and “openSesame”) again and the program shows me the
account information!

There are at least two more ways to get the hidden information by modifying the binary:

1. You can change the very first instruction of the program to jump to the location of the
hidden information so the program does not even ask you for the password.

2. Change the “cmp” instructions that checks the password to “nop” so the program does
not check the password.

Please try various methods to achieve the same goal.

