
Identification and recovery of JPEG files with missing
fragments

Husrev T. Sencar*, Nasir Memon

TOBB University of Economics and Technology, Computer Engineering Department, Sogutozu Cad. No: 43, Ankara 06560, Turkey

Keywords:

File recovery

Fragmentation

JPEG/JFIF

Huffman code tables

a b s t r a c t

Recovery of fragmented files proves to be a challenging task for encoded files like JPEG. In

this paper, we consider techniques for addressing two issues related to fragmented JPEG

file recovery. First issue concerns more efficient identification of the next fragment of a file

undergoing recovery. Second issue concerns the recovery of file fragments which cannot be

linked to an existing image header or for which there is no available image header. Current

file recovery approaches are not well suited to deal with these practical issues. In

addressing these problems, we utilize JPEG file format specifications. More specifically, we

propose a technique based on bit sequence matching to identify fragments created by the

same Huffman code tables. We also address the construction of a pseudo header needed for

recovery of stand-alone file fragments. Some experimental results are provided to support

our claims.

ª 2009 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Ability to recover files from a storage volume without file

system information involves several algorithmic and statis-
tical challenges. These challenges are primarily a result of two
main factors. The first and foremost is the inability to lay out
file data contiguously on the storage. Essentially, systems
store files by breaking them into fixed-size chunks of data
called blocks that are arranged in some physical or logical
sequential order. In conventional hard disk drives, a data
block is located in multiple consecutive physical sectors of
radially concentric tracks, and to achieve shorter access time
file data is stored on consecutive blocks. However, over time
as the files on a disk are added, deleted and changed in size file

fragmentation unavoidably occurs as such modifications will
externally fragment the free space and will leave only small
clusters of unallocated blocks for storage of new files. By
contrast, the newly emerging solid state drives have blocks of
memory chips and have no sectors or tracks. With these

drives the main concern is to increase the life of the drive by
wearing out the chips at an even rate. Therefore a layer of
logical remapping is needed to spread the writes among all

chips evenly. As a result of the wear-levelling, all files are
inherently physically fragmented, and in the case of an
interval drive controller failure, most severe instance of file
fragmentation occurs. The problem with fragmentation is
that, as a result, pieces of fragmented files will be distributed
all over the storage volume and, in the lack of any file system
metadata, different pieces of a file cannot be trivially identi-
fied. Fig. 1 depicts a layout of files distributed across logical
blocks of a storage media to illustrate file fragmentation.

The other factor is the considerable variety and complexity
in the ways information can be coded into binary format. In

most file formats, data is stored in encoded form to provide
compression in size, error checking and correction, and
security. This requires sophisticated encoders and decoders to
interpret the file data. As a result, pieces of a file reveal little or
no information about the content of the file. When combined

* Corresponding author.
E-mail address: htsencar@etu.edu.tr (H.T. Sencar).

ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ie r . com/ loca te /d i in

1742-2876/$ – see front matter ª 2009 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2009.06.007

d i g i t a l i n v e s t i g a t i o n 6 (2 0 0 9) S 8 8 – S 9 8

with uncertainties concerning fragmentation level of files on
a drive (like number of pieces that the file is fragmented into,
size of each piece, and how the pieces of a file are scattered
over the drive), inability to interpret stored information in
individual data blocks greatly complicates the recovery of
fragmented files.

Today, there are only a few techniques that allow recovery
of fragmented files (Pal et al., 2003, 2008; Pal andMemon, 2006;
Garfinkel, 2007). These techniques are proven to be very
effective in recovering files that are not fragmented intomany

pieces and when those pieces are not placed far from each
other on the storage. Nevertheless, these techniques have
certain limitations that warrant further research. An inherent
shortcoming of all current fragmented file recovery
approaches is that recovery process is not error tolerant. That
is, in cases where part of a file’s data (which may include
a single bit) is deleted or corrupted, the file can be recovered
only up to the point of disruption in the data, and rest of the
file data cannot be considered during recovery. Ultimately, if
the header of the file is missing, then the file cannot be
recovered at all even though rest of its data might be intact.

Such disruptions arise most commonly when a file on the
storage is deleted by only removing its file metadata and
designating those data blocks (associated with the file) as
unused space without actually erasing the data on them. In
such cases, when a new file’s data is written over blocks that
contain deleted files, those files can only be recovered until
the disruption in the file data.

The other limitation emerges from the difficulties in
identifying start and end points of file fragments. In current
approaches, the procedure used to identify the fragments of
a file creates a computational bottleneck when the storage

volume contains large amounts of data and when a file is
fragmented into more than two pieces. In such cases, only
single or few fragments of each file are rather easily identified
and the remaining fragments have to be searched in large
clusters of data blocks. To identify the remaining fragments,
those data blocks have to be subjected to a comprehensive

analysis as each cluster may contain a mix of fragments from

many files as well as random data and unallocated blocks.
Focusing on recovery of fragmented JPEG images, in this

work, we attempt to address two fundamental questions.
First, how should the recovery be performed for files whose
headers cannot be identified or not available. And second,
given clusters of data blocks, how can one effectively and
reliably determinewhether or not pieces of a file are contained
within these clusters. Crucially, the first question addresses
the dependency on file header in bootstrapping the recovery
process. The second one concerns with the speed at which
recovery can be conducted. Our approach utilizes specifics of

JPEG file format in its operation; however, the underlying ideas
can be generalized to other similar file formats.

Next, we provide an overview of current fragmented file
recovery approaches and give a more detailed description of
our approach. Section 4 provides a brief description of JPEG
image compression standard with special emphasis on its file
format. The utilization of structural properties of JPEG files in
identification of file fragments is described in Section 3. We
focus on recovery of file fragments that cannot be linked to
a file header in Section 5. Our conclusions are presented in
Section 6.

2. Recovering JPEG files

JPEG is the most widely adopted still image compression
standard. It is the default format saved by most digital
cameras and camera phones. JPEG enjoys such popularity not
because it provides the best (rate/distortion) performance and

coding flexibility but rather because of its simplicity and low
computational resource requirements. Below, we describe in
more detail proposed fragmented JPEG file recovery
approaches. Then, wewill describe how these approaches can
be further improved.

2.1. Review of existing approaches

Three techniques have been proposed for recovery of frag-
mented JPEG files (Pal and Memon, 2006; Garfinkel, 2007; Pal
et al., 2008).1 In their operation, these techniques primarily
utilize detailed knowledge of the file system and the JPEG file
format. The deployed procedure for recovery can be viewed to
consist of three phases, despite a number of important
differences between these techniques. A JPEG file contains an
ordered sequence of markers, parameters, and entropy-
encoded segments that are spread over multiple blocks.
However, to be able to discriminate JPEG file data from non-
JPEG data one can only rely on the markers. Therefore, in the

first stage, all data blocks of the storage device are scanned for
known file markers. Each marker is two bytes in length with
the first byte always having 0xFF value and the second byte
containing a code that specifies the marker type. Although
there are many markers, few can be rather easily distin-
guished. Among these, the most important one is the start of
imagemarker whichwill be located at the beginning of a block

AA0 A1 A2 B0 B1 B2 3C4C3 A4

E7 E8 E9

E2

B8B7B6D9C7C6

A5 A6 D3 D4 B3 B4 B5 E10E

51 6 7 8 9 10

2019181615131211

3028272625242321

image
marker

start of end of
image
marker

fragmentation
points

2 3 4

C

A

5

14 17

2922

Fig. 1 – File A has been broken into 2 fragments spanning 7
blocks and file B into 3 fragments spanning 9 blocks. The
file fragments are distributed across 30 logical blocks. In
between the fragments of the two files are small fragments
of files C, D and E.

1 A detailed side-by-side comparison of these techniques can be
found in (Pal et al., 2008).

d i g i t a l i n v e s t i g a t i o n 6 (2 0 0 9) S 8 8 – S 9 8 S89

andmark the beginning of a file. The end of file marker, which
will be located in the last file block, and the restart markers,

that will appear almost periodically to establish synchroni-
zation, are the other useful ones.

In the second phase, data extracted from the first file block,
containing the start of image marker, is combined together
with the data extracted from the consecutive data blocks.
Every time a new data block is merged with the previously
merged file blocks a decoding operation is performed on the
resulting data to test whether a fragmentation point is
reached. In Garfinkel (2007), a fragmentation point is deemed
to be reached when an error occurs during decoding and the
lastly merged block is discarded from the partially recovered
file data. However, this procedure is not accurate since the

decoder may quite easily confuse random block data for
entropy-coded data. To compensate for this drawback, Pal
et al. (2008) proposed an improved technique wherein each
successful decoding operation is followed by a test to detect
abrupt pixel intensity changes in the most recently merged
regions. In this case, a fragmentation point is deemed to be
reached when the test indicates that the change is significant.
In essence, these methods exploit the fact that data blocks
used for storing a file are allocated sequentially, as much as
possible. If a file is not fragmented, this phase will result with
the full recovery of the file. Considering the fragmented file

system given in Fig. 1, Fig. 2-a shows the file fragments that
can be recovered in the second phase.

In the last phase, other available pieces of a file are
recovered. This actually requires identifying starting blocks of
the remaining pieces of a file. Since a file can be fragmented at
any point, file markers cannot be relied upon for the identifi-
cation of starting blocks of file fragments and all unmerged
blocks from the second phase have to be taken into consid-
eration. More critically, a decision as to whether a block is
a starting block can only be made using the above fragmen-
tation point detection technique (which includes merging the

block with the already identified file blocks, decoding and
testing). This procedure is repeated until all available pieces of
a file are identified. However, if a piece of a file is not available,
the file will be recovered only up to the missing piece even
though subsequent pieces may be present. Fig. 2-b displays
the final result of the recovery process for the same system.

2.2. Our approach

In the light of current approaches to fragmented JPEG file
recovery, we aim at improving the proposed techniques in the
two following aspects.

1. After the first piece of a fragmented file is identified, see
Fig. 2-a, in the thirdphase, the search for the startingblockof
the remaining piecesmay prove too costly. This is due to the
fact that decoding is a computationally intensive task and
the number of unmerged blocks that needs to be considered
may be too large. To alleviate this problem, we propose

a method based on bit pattern matching to identify
sequencesofdatablocks thataremore likely tocontainother
pieces of the same file. That is, certain clusters of blockswill
be prioritized in search for the starting block of a file frag-
ment rather than performing a more random search.

2. The above summarized file recovery procedure starts by
identifying all the image headers. This is rightfully so,
because header part of an image contains necessary
parameters needed for its decoding. Since the use of
a decoder is at the core of current approaches two types of
file fragments cannot be recovered. First is the stand-alone

fragments whose headers are not available. Second is the
disrupted fragments which cannot be linked to a header due
to loss of data. Given this dependency on the header
information and the use of a decoder, we investigate the
possibility of recovering these two types of file fragments.

After describing JPEG file format, in the following sections,
we will focus on JFIF-encoded baseline JPEG image files and
discuss the details of our approach.

3. JPEG file format

JPEG is a standard developed for lossy compression of images,
and it essentially specifies a procedure for transforming
images into a streamof bytes and vice versa (Miano, 1999). The
JPEG Standard defines four compression modes: lossless,
sequential (baseline), progressive and hierarchical. In

AA0 A1 2 B0 B1 B2 A3C4C3 A4

E7 E8 E9

E2

B8B7B6D9C7C6C5

A5 A6 D3 D4 B3 B4 B5 E10E

21 22

Fully recovered images Partially recovered image

2 3 4 51 6 7 8 9 10

20191817161514131211

3029282726252423

C5

a b

2

A0 A1 A2 B0 B1 B2 A3C4C3 A4

E7 E8 E9

E2

B8B7B6D9C7C6C5

A5 A6 D3 D4 B3 B4 B5 E10E

3 4 51 6 7 8 9 10

20191817161514131211

302928272625242321 22

Recovered image fragments

5C

Fig. 2 – (a) Once all the start of image markers are identified, a fragmentation point detection technique will identify the first
fragments of files A, B and E. (b) After all the remaining data blocks are scanned to identify the remaining fragments, files A
and B will be fully recovered and E will only be partially recovered, as its middle piece is unavailable. No fragments of files C
and D will be identified since their headers are not available.

d i g i t a l i n v e s t i g a t i o n 6 (2 0 0 9) S 8 8 – S 9 8S90

sequential mode, a JPEG file is stored as one top-to-bottom

scan of the image. By contrast, the progressive mode allows
progressive transmission of images by performing multiple
scans and the hierarchical mode represents an image at
multiple resolutions. Sequential mode is required as a default
capability ant it is by far the most-often-used JPEG mode.

JPEG image compression is essentially based on discrete
cosine transform (DCT) coding with run-length and Huffman
encoding. Typical JPEG encoders have four main steps. First,
the input image is divided into non-overlapping blocks of size
8! 8 pixels. Then, two-dimensional DCT is applied to each of
the blocks to obtain transform coefficients in frequency

domain. The resulting coefficients are quantized to discard
the least important information. Finally, quantized transform
coefficients are reordered via zigzag scanning within the
transformed block and are passed through a lossless entropy
coder to remove any further redundancy. For decoding, the
above described steps are performed in reverse order.

The JPEG standard specifies JPEG Interchange Format (JIF) as
the file format. However, since many of the options in the
standard are not commonly used and due to some details that
are left unspecified by the standard, several simple but JIF
compliant standards have emerged. JPEG File Interchange

Format (JFIF) and an extended variant of it, which provides
additional supplementary information, produced by digital
cameras known as Exchangeable image file format (ExIF) are the
two most common formats used for storing and transmitting
JPEG images.

JFIF specifies a standard color space called YCbCr for
encoding color information. This colormodel consists of three
color components: Y, Cb and Cr. The Y component (lumi-
nance) approximates the brightness information while the Cb
and Cr chroma components approximate the color informa-
tion. To take advantage of the sensitivity of human eye to

changes in brightness as compared to color differences,
chroma components can be subsampled to have different
resolutions. When deployed chroma subsampling reduces the
chrominance resolution by a factor of two in either horizontal/
vertical direction or in both horizontal and vertical directions.
During compression, Y, Cb and Cr components are partitioned
into 8! 8 blocks and processed separately.

From file recovery point of view, themost important aspect
of JPEG is the storage format used in encapsulation of images
bytes in the storage media. Every JPEG image is actually stored
as a series of compressed image tiles that are usually 8! 8,
16! 8 or 16! 16 pixels in size. The term minimum coded unit

(MCU) isused torefer toeachof thesetiles.EachMCUconsistsof
a certain number of blocks from each color component. The
number of blocks per color component in anMCU is essentially
determinedby thechromasubsampling rate. Ifnosubsampling
is performed each MCU represents an area of 8! 8 pixels and
consists of Y, Cb and Cr blocks. When the horizontal chroma
resolution is halved, the MCU represents an area of
16! 8 pixels. As a result of subsampling in the chroma infor-
mation, oneMCU is composedof four blocks: twoYblocks, a Cb
block and a Cr block. When the chroma resolution is halved in
both horizontal and vertical directions, the MCU represents an

area of 16! 16 pixels and consists of four Y blocks, a Cb block
and a Cr block. Each MCU is then encoded as a sequence of its
luminance data followed by the chrominance data.

The image that underwent color-space transformation,

chroma subsampling, block partitioning, transform coding
and quantization has to be entropy coded before it can be
stored as a JPEG file. Entropy coding starts by reordering the
coefficients of the block in zigzag scan order. As a result, non-
zero coefficients will be grouped together and a large runs of
zero coefficients will be produced at the end of each scan to
which run-length coding will be applied. This run-length
coded coefficient values are further encoded with Huffman
coding. This is realized by assigning a code word to each
coefficient value from a set of Huffman code tables.

Finally, severalmarkers are intermixedwith entropy coded

data to indicate the start and end of different data fields and to
specify parameters, that are commonly referred to as header
data and include image details, compression mode, quanti-
zation tables, Huffman tables, and other relevant information
needed for decoding.

4. Use of Huffman code tables in
identification of file fragments

One of themain difficulty faced during recovery of fragmented
files is when the file data is encoded. This severely impedes
the ability to identify all file fragments. In the case of JPEG files,
only the first fragment containing the header part of a file can
be easily identified. On a high capacity storage volume, this
leaves large clusters of data blocks, between the detected
fragments. Each of these clusters may contain other file
fragments, random data and unallocated blocks, and the data
stored in these blocks needs to be examined for identification

of remaining file fragments.
In coping with this problem, two of the proposed tech-

niques have taken similar approaches. Both of the methods
are built upon the observations that files fragmented into
greater than three fragments are very rare and the gap
between the fragments of a file is likely to be small (Garfinkel,
2007). Considering bifragmented files, Garfinkel (2007) iden-
tifies two fragments of a file as two contiguous sets of data
blocks randomly carved out from the range of blocks that
mark the start and end of the file. An exhaustive search
continues until identifying two fragments which when

combined together can be decoded successfully. Alternatively,
in Pal et al. (2008), it is assumed that the starting point of the
next fragment will be within next 5000 blocks of the most
recently identified fragmentation point. Therefore during
recovery, the method merges each block with the already
identified file blocks and attempts to decode the resulting
data. A matching metric is also utilized to ensure that each
successful decoding preserves the continuity at pixel
boundary created by the merging of blocks.

In both methods, repeated application of decoding is the
key enabler in identifying the starting point of the next file
fragment. However, decoding is a computationally intensive

task, and when deployed in recovery of files that are frag-
mented into many pieces and with large gaps of blocks
between its fragments, above methods become computa-
tionally infeasible. This is not only becausemanymore blocks
have to be decoded in recovering each file, but also because
the same set of blocks will be unnecessarily decoded during

d i g i t a l i n v e s t i g a t i o n 6 (2 0 0 9) S 8 8 – S 9 8 S91

recovery of many other files. To alleviate this problem and to

extend the capabilities of current techniques to handle
severely fragmented files, we propose to utilize structural
properties of individual files to identify data blocks whose
structural properties are similar to those of the identified
blocks.

JPEG file data contains two classes of segments: the entropy
coded segments, which is typically much larger in size and
contain the coded image data, and the marker segments,
which contain all the information needed for decoding the
entropycodeddata. Entropycoding isused to further compress
the quantized coefficients by efficiently encoding the most

likely occurring values by shorter binary sequences. The
Huffman look-up tables used to encode are a part of JPEG
header. Ideally, for better compression, each code table has to
be tailored specifically for each image file; however, this is
rarely the case. When combined with the limitations of Huff-
mancoding (as compared toArithmetic coding) this essentially
means Huffman coded sequences will not be sufficiently
random. It also implies that two entropy coded sequences
using different Huffman tables can be distinguished fromeach
other. This fact forms the basis of our approach.

More formally, the underlying idea is the following. To

distinguish an entropy-coded data, generated by a given
Huffman code table, from another, we propose to use the
occurrence frequencies of certain bit patterns constructed
according to JPEG file format. This can be viewed as a simpli-
fied decoder but without the sensitivity to structural proper-
ties of the file. Consider a number of data block clusters and
a partially recovered filewhose next fragmentwill be searched
in those clusters. Rather than trying to decode all the blocks,
a number of bit patterns will be generated and searched in
each of these clusters to identify themost likely cluster(s) that
may contain the next fragment. The starting block of the next

fragment will then be identified through decoding as per-
formed in Garfinkel (2007) and Pal et al. (2008).

The ability to identify clusters of data blocks that are
similar to an encoded file in terms of the way they are entropy
coded offers two advantages. First, rather than randomly
decoding many blocks to identify a starting block of a frag-
ment only the most likely ones determined based on bit
sequence matching will be decoded. Second, even if a few
bytes of a file are missing decoding based fragment identifi-
cation will not identify the incomplete fragment and frag-
ments following it. In such cases, bit sequence matching can
be deployed to identify likely fragments of a file. Below we

describe the construction of bit patterns to be used during
matching and provide some results.

4.1. Bit pattern construction

The premise of our approach is that if the occurrence
frequency of a given n-bit pattern in an m-bit sequence one
should expect to encounter roughly m

2n matches (assuming very

large m). However, if the m-bit sequence is not random, then
for certain n-bit patterns we should expect a bias which will
reflect as a deviation from the expected number of random
matches. Constructing bit patterns that can be detected in
a file more times than expected through random chance
requires that file have a structure. Since JPEG uses 4 Huffman

code tables (two for luminance coefficients and two for chro-

minance coefficients) which are most generally not optimized
to match statistical properties of the data, resulting JPEG bit
sequences will have a structure. In order to capture the degree
of non-randomness, frequency characteristics of bit patterns
constructed from Huffman code words can be used. It should
be noted that the two other components of a JPEG file, i.e.,
markers and parameters, cannot be used for this purpose.
Parameters are typically at the header part and they are easily
identified at earlier stages of recovery and global file markers
can only be used distinguish JPEG files from other files.

Another reason for JPEG files having a structure is that they

are generated by repetitively coding MCUs, which are the
fundamental building blocks of all JPEG files (Hass). Each MCU
correspond to a number of 8! 8 luminance (Y) and chromi-
nance (Cb and Cr) blocks of the image which is determined by
the rate of chroma sampling. To encode each individually
compressed color component a different Huffman code table
is used. One notable detail is that each color component is
composed of two different types of coefficients, namely, DC
and AC coefficients, and due to their statistical properties
different code tables are used in their coding. During encoding
of image blocks, MCU structure is preserved, and it is ensured

that encoding sequence always starts by Y-DC and Y-AC
components followed by DC and AC coefficients of Cb and Cr
components. Fig. 3 displays the MCU coding sequence for
three rates of chroma subsampling.

The arrangement of coefficients in Fig. 3 shows in what
order code words selected from the four Huffman look-up
tables will appear in the final bit sequence. Moreover, to
prevent ambiguities when differentiating code words from
different fields, end of block (EOB) codes are available.
However, potential use of EOB codes in constructing bit
patterns is limited. For DC coefficients they are usually not

needed and for AC coefficients they have to be used onlywhen
the sequence of AC coefficients ends prematurely because
many of them are all zeros. Luckily, the latter condition holds
most of the time. Another consideration is the length of the
chosen bit patterns. Since shorter bit patterns will yield many
randommatches, even if there is a bias due to structure of the
file thatmight not be noticeable (as JPEG bit sequences are still
more random than not). Therefore, larger bit patterns have to
be selected.

4.2. Results

We performed a set of experiments to test the premise that bit
patterns constructed from a given Huffman table can be used
to identify files created using the same Huffman table. Bit
patterns are generated in two different forms using the
Huffman tables extracted from baseline JPEG images with no
chroma subsampling. That is, each MCU consists of only 3
blocks, e.g., Y, Cb and Cr blocks.

In the first case, we selected the EOB code that follows AC

coefficients of the luminance component (Y-AC EOB). For this
purpose, we considered three images with different Huffman
tables in which Y-AC EOB code word are defined as ‘1010’,
‘1000’ and ‘11000’. Then, the number of occurrence of each
code word in all three files are computed. We observed for all
bit patterns that measured frequencies, computed as number

d i g i t a l i n v e s t i g a t i o n 6 (2 0 0 9) S 8 8 – S 9 8S92

of matches divided by the size of the file, closely follows the
expected values, i.e., 1/24 and 1/25, in all cases. This result is in
line with our intuition that for short patterns the bias, i.e.,
deviation from expected value, will be too small to be

observed.
In the second case, we aimed at constructing longer bit

patterns by choosing code words from three of the four
Huffman tables denoted by Y-DC, Y-AC, CbCr-DC, and CbCr-
AC. Following Fig. 3, the pattern is generated as a sequential
combination of Y-AC EOB code, a CbCr-DC code word, and
a CbCr-AC code word. For this purpose, a set of three larger
sized images are used. We constructed all possible 9- to 16-bit
patterns that confirm to above arrangement of codewords by
appropriately selecting codewords from the extracted CbCr-
DC and CbCr-AC Huffman tables. Then, the occurrence

frequencies of all generated bit patterns in all the image files
are computed. Results show that as the length of bit pattern
increases from 9–16 the ability of the bit patterns to identify
the file with the same Huffman table increases, and, in fact,
above 14-bit each file is identified correctly with an observable
bias in the measured frequencies. Tables 1 and 2 provide the

measured frequencies for 15-bit and 16-bit patterns in the
three images.

It must be noted that the measured values are obtained as
the average of all possible bit-patterns in that length. The

reason we expect to observe an increase in the measured
frequency as compared to the expected frequency (i.e., 1/2n for
ann-bitpattern) is that thecodewordsthatmakeupthepattern
are indeed used in encoding of the file whichmake themmore
likely to match with the searched pattern as compared to

Cb CrY

Image Blocks

MCU 0 BitsMCU

Header

0
Cb

Cr

Y

Cb CrY0 Y1sampling
color

Cr
Cb

Y0 Y1

MCU 0

Image Blocks
Header

MCU 0 BitsCr0

Y1Y0
Cb0 Cb1

Cr1

Coded Sequence

Cr3
Cb3

CrY1 CbY2 Y3Y0

Coded Sequence

sampling
colorCb0

Cr0 Cr1MCU 0

Y0 Y1

Cr
Cb

Y2

MCU 0 Bits

Header
Image Blocks

Cb1
Y1

Y3

Y0

Y2

a

b

c

Y3

Coded Sequence

Fig. 3 – Encoding of MCUs under different rates of chroma subsampling. (a) No chroma subsampling is performed. (b)
Horizontal frequency is halved. (c) Both vertical and horizontal frequencies are halved.

Table 1 – Averaged occurrence frequencies of all 15-bit
patterns in images A, B and C. Patterns are generated
from three different sets of Huffman tables, i.e., HA, HB

and HC. Each row provides the frequencies of three sets of
patterns in the same image.

HA patterns HB patterns HC patterns

Image A 3.07E"05 2.38E"05 2.36E"05
Image B 2.89E"5 3.39E"05 3.25E"05
Image C 2.88E"05 2.54E"05 3.19E"05

d i g i t a l i n v e s t i g a t i o n 6 (2 0 0 9) S 8 8 – S 9 8 S93

a random pattern. (Had we averaged over all 2n possible n-bit
patterns, we would not see an increase.) To more reliably

quantify the significance of the bias, large scale experiments
have tobe conductedand statistical tests have tobeperformed.

A related issue is the diversity of Huffman tables used in
encoding of images. If all images were to be encoded with the
same set of Huffman tables, then the described approach here
wouldnotofferanyadvantage.However,manydigital cameras
are known to use their own Huffman tables and image editing
software tools typically generateHuffman tables optimized for
agiven image.Therefore, even if this approachmaynotbeused
in identifying fragments of individual images (asmany images
may use the same set of tables), it will, at worst, provide

a differentiation of fragments at a class level.

5. Recovery of fragmented files with missing
data

In this section, we address the problem of file recovery under
two scenarios. First concerns file fragments for which there is
noavailablefileheader, and thesecondconcernsfile fragments

that follow amissing piece of a file. In Fig 2-b, two fragments of
file C falls into former category, and the second fragment of file
E (spanned over blocks 28–30) into the latter case. Both cases,
however, pose a challenge to current techniques. Recovery of
JPEG files (fragmented or not) requires that an image header be
present. This is because all the necessary information needed
by a decoder to interpret a JPEG file is stored in the file header.
Therefore, fragments that cannot be linked to a known header
arenotconsidered for recovery.Moreover, sinceadecodinghas
to follow the structure defined by JPEG file format, any distur-
bance or corruption of the file structure will prevent the

decoding of file data. Hence, disruption of the continuity of the
file data will cause decoding errors, and fragments that are
beyond the disruption point will not be able to recovered.

Essentially, the problem of recovering disrupted file frag-
ments is a special case of the more general headerless file
recovery problem. But, since restart markers defined by the
JPEG standard can be utilized in addressing the former
problem, they will be discussed separately.

5.1. Recovery of disrupted fragments

In the JPEG standard, restart markers are provided as a means
for detection and recovery after bitstream errors. There are
eight unique restart markers and each is represented by a two
byte code (0xFFD0–0xFFD7). They are the only type of marker
that may appear embedded in the entropy-coded segment;

therefore, they can be directly searched in the file data. Restart
markers are inserted periodically in the data and they repeat
in sequence from 0 to 7, as indicated by the value of the
marker code. The number of MCUs between the markers has
to be defined in the (DRI marker segment of the) file header.
Although insertion of restart markers is optional, they are
generally used in coding of large sized images.

In JPEG files, DC coefficients of all color components are

encoded as difference values rather than as absolute values.
When a restart marker is hit, this DC difference is reset to zero
and the bitstream is synchronized to a byte boundary. In other
words, the runs of MCUs between restart markers can be
independently decoded. Also, since restartmarkers are placed
in sequence, in the case of a bitstream error decoder can
compute the number of skipped MCUs with respect to the
previous marker and determine where in the image the
decoding should resume.

These properties make restart markers potentially very
useful in recovering disrupted fragments. These fragments

can be quite reliably identified due to unique restart marker
codes appearing periodically. However, themain problem that
remains to be addressed is the identification of the file header.
To accomplish this, one can utilize the approach described in
Section 3. Since header information for all the partially
recovered files are available, one can generate appropriate bit
patterns and search for fragments that are more likely to be
generated using the sameHuffman code tables. Then, starting
from the first restart marker on, disrupted fragment can be
decoded using one of the headers from those files or can be
merged to the first fragment of those files and then decoded.

In any case, decoding will succeed only for the matching file.
To assess the potential use of restart markers in recovering

disrupted fragments, we simulated different fragmentation
scenarios. For this purpose, random chunks of data are erased
from the tail, center, and both header and tail parts of the
original JPEG file displayed in Fig. 4. In the bitstreams

Table 2 – Averaged occurrence frequencies all of 16-bit
patterns in images A, B and C. Patterns are generated
from three different sets of Huffman tables, i.e., HA, HB

andHC. Each row provides the frequencies of three sets of
patterns in the same image.

HA patterns HB patterns HC patterns

Image A 1.46E"05 5.87E"06 1.29E"05
Image B 9.93E"06 1.5E"05 1.23E"05
Image C 1.2E"05 1.25E"05 1.49E"05

Fig. 4 – Original JPEG file.

d i g i t a l i n v e s t i g a t i o n 6 (2 0 0 9) S 8 8 – S 9 8S94

corresponding to deleted files, the restart markers are
searched. After identifying any of the seven restart markers,
all the bits prior tomarker position are discarded and resulting
data is merged with the first part of the file or with the header
extracted from the original JPEG file and decoded. Recovered
files are displayed in Fig. 5. It can be seen that fragments of the
original file can be successfully recovered. It should be noted
that because the stored image size in the header is not

modified, in all cases images appear in the right size, but the
content is shifted.

5.2. Recovery of stand-alone fragments by use of pseudo
headers

Obviously without a valid header, a JPEG file or a part of it
cannot be decoded. Given this fact, in this section, we pose the
question of what information one will need to reconstruct
a pseudo header that can be utilized in decoding of a stand-
alone file fragment. The information that can be inferred by

analysis of encoded file data will not be sufficient to recon-
struct a file header. Our premise is that image files stored on
a recovery medium will be interrelated to some extent. This
relationmay exist because imagesmay have been captured by
the same camera, edited by the same software tools, or
downloaded from the same Web pages. All these factors

induce different levels of shared information among the
neighboring files in terms of their encoding properties which
may vary from image quality settings to specifications of the
encoder. Therefore, in essence, we will investigate the
possible use of encoding related information from recovered
files in recovery of stand-alone fragments.

Considering only baseline JPEG/JFIF images, the most
common JPEG encoding method used by most digital cameras

and on theWeb, the information needed to encode/decode an
image can be categorized into four types. These are:

1. the width and height of the image specified in number of
pixels;

2. the 8! 8 quantization tables used during compression;
3. the number of color components and type of chroma sub-

sampling used in composition of MCUs; and
4. the Huffman code tables.

Decoder essentially needs image size so that the number of

MCUs can be computed and the image blocks obtained by
decoding of each of the MCUs can be laid out at their proper
locations on the image. Since the encoded values are not the
quantized values, but the associated quantizer bin values,
quantization tables are needed to perform de-quantization
prior to inverse-DCT transformation. The composition of

Fig. 5 – Recovered files after erasure of random amounts of data from tail (upper left), center (upper center and right), and
both header and tail parts (lower row) of the original image.

d i g i t a l i n v e s t i g a t i o n 6 (2 0 0 9) S 8 8 – S 9 8 S95

MCUs provide decoder with the ability to decide in what order
Y, Cb and Cr components will be decoded. Decoding is
implemented as a simple table look-up operation where the
decoder looks up a code word in the appropriate Huffman
code tables to determine the actual bit representation, i.e., Y-
DC, Y-AC, CbCr-DC and CbCr-AC.

Another issue that needs to be discussed is the exactness

requirements on this four type of information. Essentially,
first two types of information are not critical elements for
successful decoding. If the selected image size do not match
with the actual one, image blocks will appear shifted in the
resulting image. Due to nature of these shifts the resulting
image might not be smooth and recognizable, but it will
nevertheless not be filled with random data.

Similarly, compression information primarily impacts the
visual quality of the resulting image, and a mismatch in the
used tables will only result with a visually degraded image.
Fig. 6 displays a decoding scenario where three images are

decoded also using quantization tables from the two other
images. It can be seen that despite the degradation, in all
cases, important image details are preserved. Therefore, even
if image size and quantization tables do not match exactly
with the actual ones as long as MCU composition and Huff-
man tables match recovery can be accomplished.

To test the validity of this approach, we performed the
following experiments. In the first one, we consider three
gray-scale images with two different sizes and different
quantization tables but with the same Huffman tables. The
images will be referred to as A, B and C and are displayed in
Fig. 7. Fig. 8 displays decoding results for the case when file A
data is decoded using headers of images B and C. In both cases

decoding is performed successfully. However, due to
mismatch between the sizes of A and B, decoder placed blocks
by shifting their locations. It must be noted that since sizes of
A andC are the same, decodingAwith C’s headerwill succeed.
Fig. 9 shows another decoding scenario where file A’s data and
C’s data are combined and decoded using a header from an
image withmuch larger size, but still using the sameHuffman
tables. In the decoded image, it can be seen that A’s data is
tiled across the larger sized image, but C’s data caused loss of
synchronization and it is not decoded properly. Since there
were no restart markers, the synchronization could be

established until the end of data.
The composition of MCUs and specification of the Huffman

tables are the most critical aspects of successful decoding. A
mismatch in MCU size and Huffman tables will cause an
immediate decoding error that can only be recovered by
providing the correct values. Three most typical subsampling

Fig. 6 – (a) Images compressed using the quantization tables obtained from the image in the first row. (b) Images compressed
using the quantization tables obtained from the image in the middle row. (c) Images compressed using the quantization
tables obtained from the image in the third row.

d i g i t a l i n v e s t i g a t i o n 6 (2 0 0 9) S 8 8 – S 9 8S96

configurations lead to use of MCUs with 8! 8, 8! 16 and
16! 16 pixels in size. In coding of gray-scale images since

there is only Y component the default MCU size is 8! 8 pixels.
In color images, however, to achieve better compression, MCU
size is most generally set to 16! 16 pixels. Therefore, as long
as Huffman tables are known, MCU size can be easily deter-
mined by trying all possible configurations.

To exploit the MCU composition of an image during
recovery, we performed an experiment similar to described in
Section 4.2. Chunks of datawere removed from the header and
tail parts of the image given in Fig. 4 such that remaining data
started fromthemiddlepart of thefirstMCU followinga restart
marker. In Section 4.2, it was shown that if the data at the

beginning of the disrupted fragment is discarded until the first
restart marker, it can be decoded successfully. In this case,
however, we tried to identify an MCU boundary, rather than
a restart marker. Noting that an MCU starts with a code word
fromY-DCHuffman table, we tried to identify the boundary by
first searching fora likelyY-ACEOBcode in thebeginningof the

file, which will be at most 3 bytes away from the MCU
boundary. Then, the file is attempted to be decoded by

changing the starting bit positions. Fig. 10 shows two versions
of the recovered file using the above search procedure.

As a result, it can be asserted that the ability to recover
stand-alone file fragments reduces to ability to determine the
underlying Huffman tables. If the Huffman tables are
customized for the image then recovery is bound to fail.
However, many encoders use precomputed tables or the
suggested tables by the JPEG standard. When combined with
the approach described in Section 3, this makes it possible to
identify whether or not the stand-alone fragment is generated
by a set of Huffman tables of other recovered images or by any

of the known Huffman tables.

6. Conclusion

In this paper, we proposed an approach to improve the
performance of existing fragmented file recovery techniques.
Our contributions are two-fold. First, we proposed amethod to
identify the next fragment of a filemore efficient than random
decoding approach. Second, we demonstrated methods for

Fig. 7 – Images (a) A with size 1603 120 pixels, (b) B with size 1203 160 pixels, and (c) C with size 1603 120 pixels are
generated using the same Huffman tables.

Fig. 8 – Result for decoding image A with image B header.
Fig. 9 – Result for decoding File A and C data (merged
together) using a header of a larger image.

d i g i t a l i n v e s t i g a t i o n 6 (2 0 0 9) S 8 8 – S 9 8 S97

recovering disrupted file fragments and investigated the
possibility of constructing a pseudo header for recovery of

stand-alone file fragments. Additional work will be done on
a more diverse data set to establish the generality of results.

We finally thank Chander Mohan, a senior student at IIT
Kanpur, India, for helping us with the experiments during his
summer internship.

r e f e r e n c e s

Garfinkel S. Carving contiguous and fragmented files with fast
object validation. In: Proceedings of the 2007 digital

forensics research workshop, DFRWS, Pittsburgh, PA, August
2007.

Hass C. Designing a JPEG decoder http://www.impulseadventure.
com/.

Miano J. Compressed image file formats: JPEG, PNG, GIF, XBM,
BMP. ACM Press; 1999.

Pal A, Shanmugasundaram K, Memon N. Reassembling image
fragments. In: Proceedings ICASSP, Honk Kong, April 2003.

Pal A, Memon N. Automated reassembly of file fragmented
images using greedy algorithms. In: IEEE transactions on
image processing, February 2006, pp. 385–93.

Pal A, Sencar HT, Memon N. Detecting file fragmentation point
using sequential hypothesis testing. In: Proceedings of the
2007 digital forensics research workshop, DFRWS, Florida,
August 2008.

Fig. 10 – Recovered images from a disrupted file fragment through adjusting MCU boundary. Image in (b) is one MCU shorter
than image in (a).

d i g i t a l i n v e s t i g a t i o n 6 (2 0 0 9) S 8 8 – S 9 8S98

	Identification and recovery of JPEG files with missing fragments
	Introduction
	Recovering JPEG files
	Review of existing approaches
	Our approach

	JPEG file format
	Use of Huffman code tables in identification of file fragments
	Bit pattern construction
	Results

	Recovery of fragmented files with missing data
	Recovery of disrupted fragments
	Recovery of stand-alone fragments by use of pseudo headers

	Conclusion
	References

