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Researchers have developed forensic analysis techniques for so many types of digital
media that there is a procedure for almost every digital media that a law enforcement
officer may encounter at a crime scene. However, a new type of device has started to gain
momentum in the consumer market: web thin clients. These web thin clients are char-
acterized by native support for basic web browsing, yet other functionality relies on a
combination of web applications and web storage. In fact, these devices are so different
from other types of computing and storage devices that virtually all of the techniques
forensic examiners and researchers typically use do not apply.
The most popular web thin client, Chrome OS, has additional forensic challenges: (1) all
data associated with users is encrypted, (2) Chrome OS correctly uses TPM and Secure
Boot, and (3) user data is stored on the device and in the cloud.
In this work, we present a novel approach to extract residual evidence stored on Chrome
OS devices that successfully bypasses these challenges. Specifically, we are able to deter-
mine which extensions and apps are installed on an encrypted Chrome OS device, without
breaking or otherwise extracting the encryption keys. Our framework, called dbling,
generates signatures or fingerprints of extension and app code that persist after encryp-
tion, and we are able to use these fingerprints to identify the installed extensions and apps.
We create fingerprints of 160,025 extensions for Chrome OS, we measure the uniqueness
of these fingerprints, and we perform a case study by installing 14 extensions on a Chrome
OS device and attempt to find their fingerprints.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction Web thin clients are a type of platform that has recently
One of the early computing architectures was a multi-
user mainframe that users connected to through termi-
nals, or what came to be known as thin clients. However, as
desktops became more powerful, this type of architecture
drifted to the side, and these fat clients dominated. The
industry is starting to come full circle, with the rise of cheap
thin clients that leverage the power of cloud computing,
the web thin client.
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gained momentum in consumer markets to the point
where they accounted for approximately 9.6% of all sales of
desktops, notebooks, and tablets in 2013 (NPD Group,
2013). As of the third quarter of 2015, they also accounted
for more than 51% of all sales for the Ke12market in the U.S
(Swartz, 2016). Web thin clients are also poised to become
“a platform for smart TVs and IoT devices” (Darvell, 2016),
broadening their impact as part of the 40þ billion devices
projected by ABI Research (2014) to go online by 2020.

As web thin clients continue to proliferate in the con-
sumer marketplace, a key question of concern for the
forensic community is how to extract residual evidence
fromweb thin clients. This is a difficult question to answer
for web thin clients in general, as they can store user data
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on the device or on any number of web and cloud service
providers due to their nature as a thin client.

We focus on a web thin client powered by Google's
Chrome OS, a specialized version of the open-source Chro-
miumOS (Chromium Projects, 2016a). Chrome OS dominates
theweb thin client market with the Google Chromebook (the
most common form factor of Chrome OS device) and other
web thin client devices. The key idea is that Chrome OS only
runs a browser natively, and web applications provide all
other functionality. Consequently, Chrome OS in particular
offers unique forensic challenges, as (1) all data associated
with users is encrypted, (2) secure boot safeguards prevent
common acquisition vectors, (3) local storage is mainly a
cache for online data, and (4) extensions allow users to
extend the functionality of the system.

In this paper, we describe a novel approach to extract
residual evidence stored on Chrome OS devices. Specifically,
we are able to determine which extensions and apps are
installed on an encrypted Chrome OS device without
breaking or otherwise extracting the encryption keys, accessing
the users' data stored online, or circumventing the secure
boot features. We style our approach after biometrics: we
generate fingerprints of extensions and app code that persist
after encryption, and we are able to use these fingerprints to
identify the installed extensions and apps. To accomplish
this, we generate a mathematical template, which we style
as a fingerprint, for the extensions that we can then compare
with portions of the encrypted filesystem.

The information of installed extensions and apps is
vitally important to forensic examiners when analyzing a
web thin client. As the users' data may be stored on web
and cloud providers, an examiner can use this information
to understand which web and cloud providers might have
the users’ data. While our approach cannot reveal the data
stored on the device (because we do not break the device
encryption), we believe that the information of installed
extensions and apps is critical information to assist a
forensic examiner to discover more sources of user data
and ultimately establish a more complete narrative of the
incident.

The main contributions of this paper are:

� We identify important, at-rest file metadata that
persists after encryption on Chrome OS devices.

� We describe a mathematical template to turn the
metadata into fingerprints.

� We develop a novel approach to identify extensions
and apps that are installed on Chrome OS devices
using only an image of the encrypted drive, and we
implement this approach in a tool called dbling.

� We evaluate our approach by creating fingerprints of
160,025 Chrome OS extensions, and we perform a
case study by installing 14 extensions on a ChromeOS
device and attempt to find their fingerprints.
Forensic challenges and opportunities in web thin
clients

To understand our approach of extracting residual evi-
dence stored on Chrome OS devices, we discuss the unique
features of web thin clients, and particularly Chrome OS,
which make forensic analysis on them both challenging
and rich with opportunities.
Background: web thin clients

Thin clients are computers that rely on a server to
perform the majority of their computations (United States
Army, Chief Information Officer/G-6, 2013; Mell and
Grance, 2011; Badger et al., 2012). Aweb thin client natively
supports basic web browsing capabilities, and for any other
functionality relies on a combination of web applications
and web storage. Web thin clients may also support “pack-
aged apps” that integrate with the browser to run locally to
some degree, and in some cases can run offline as well.

This abstract definition of web thin clients helps identify
systems of this type, but to understand them thoroughly,
we must focus on a particular web thin client instance. As
of this writing, there are two principal implementations on
the market: Mozilla Firefox OS and Google Chrome OS. We
use Chrome OS as the subject of our analysis for the
following reasons:

(1) Chrome OS is built on the open-source Chromium OS,
allowing us tomake customizations as necessary for our
experimental setup.

(2) The number of devices running Firefox OS is limited, the
documentation is not as extensive as that for Chrome
OS, and Firefox OS is in the process of being retargeted
to connected devices (Darvell, 2016).

(3) The ecosystem of Chrome OS is more mature, has more
users, and more extensions, allowing our forensic
techniques to have greater impact.

To support the last point above, according to NPD Group
(2013) the share of Chromebook unit sales for the U.S.
commercial channel (which includes desktops, laptops, and
tablets) went from 0.2% in 2012 to 9.6% in 2013. In 2014
Chromebooks then experienced a 125% growth in the U.S.
business-to-business market, as shown in Table 1, and the
sales of Chromebooks have continued to increase year after
year (NPD Group, 2015a; 2015b; ABI Research, 2015).
Chrome OS: key features

While Chrome OS has many security features and other
attributes that differ from traditional computing devices,
there are four main features that make Chrome OS a
challenging subject for forensic examiners. We do not
discuss the other features that have no bearing on forensic
analysis.

Encrypted user data
Chrome OS encrypts all user data using eCryptfs

(Halcrow, 2007; Chromium Projects, 2016b, d), and it uses
several keys to encrypt both the names and content of the
files (see Table 2). This practice protects users' privacy from



Table 1
U.S. business-to-business (B2B) PC Category Growth.

Unit growth 2013 2014

Chromebooks N/A 125%
Windows Notebooks �0.4% 1.9%
Total Desktops 9.0% 5.8%
Build-To-Order (BTO)

PCs (Notebooks and Desktops)
8.4% 28.3%

Thin Clients �4.4% 27.4%
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opportunistic thieves. In accordance with common prac-
tices in digital forensics, we make the assumption that the
data at rest (on the hard drive) will be the main focus of an
analysis. We also assume we do not have the users’ cre-
dentials and that breaking the encryption is infeasible,
which means the filenames and their contents are un-
available to us. However, from our analysis of eCryptfs as
Chrome OS uses it, there is one feature of eCryptfs that we
can use to our advantage.

As Halcrow (2007) describes, “eCryptfs is a stacked fil-
esystem that encrypts and decrypts the files as they are
written to or read from the lower filesystem.” The “lower
filesystem” is the set of encrypted files that are at rest on
the disk, and the “upper filesystem” refers to the decrypted
files. Because eCryptfs encrypts files individually before
writing them to disk, the file's metadata remains mostly
intact. Although there are slight variations in the time-
stamps and file size (specifically, AES is a block cipher, so
eCryptfs will round the size of a file up to the nearest 4096
bytes), the metadata of the encrypted file deviates within a
negligible range. This is the basis from which we create
fingerprints of installed extensions and apps.

TPM and secure boot
Chrome OS stores some of the encryption keys in the

Trusted Platform Module (TPM) as shown in Table 2. As
described in full detail in the Chrome OS documentation
(Chromium Projects, 2016d,c), a number of malicious ac-
tions will jettison the encryption keys, making the data
unrecoverable.

Chrome OS also uses Secure Boot1 to check that the firm-
ware and kernel both pass integrity checks before booting,
thereby preventing tampering with the operating system
(Chromium Projects, 2016e). However, if the user has put the
device in developer mode, Chrome OS skips the OS integrity
check during boot, but we cannot assume that this is the case.
Secure Boot also prevents an examiner from booting a custom
OS for doing forensics, as has been done previously with
challenging systems (Singh et al., 2009), without effectively
destroying the evidence on the disk. Without being able to
boot such a custom OS, it is also infeasible to perform a
memory dump or memory analysis.

These features make Chrome OS more delicate than
other types of systems. Any forensic techniques that aim to
support Chrome OS must take this into account so as to
maintain evidence integrity. Therefore, in this work we as-
sume that we cannot extract the encryption keys stored in
the TPM and that we cannot boot a custom firmware or OS.
1 Sometimes referred to as verified boot.
Limited local storage
A benefit of web thin clients is that, due to the local hard

drive being a cache of the users' cloud data, they typically
use cheap, fast, and small hard drives. From a business
perspective, using a 16 GB solid state hard drive provides a
good user experience with quick boot times while keeping
costs down. Because Chrome OS devices are thin clients
and rely on servers for computation and storage, this also
makes sense to only store a cache of recently used files from
the user's Google Drive.

From a forensics perspective, this is a new challenge
to have a suspect's device that has some unknown subset
of their files stored locally instead of having all their data
on the acquired evidence. Given the Completeness rule
of evidence (Ahmad and Ruighaver, 2004), this means
that by analyzing just the files on the device, an exam-
iner cannot tell the complete story of the crime or
incident.

This is why our approach for extracting the installed
extensions and apps on the device is important to forensics,
while we do not reveal the content of the files on the de-
vice, the installed extensions and apps points the examiner
in the direction of further data. For instance, if an examiner
knows that the suspect has installed the TweetDeck,
Evernote, and Flickr extensions, then the examiner knows
what cloud service providers to contact about extracting
the suspect's data.

Extensions
Chrome supports extensions that “modify and enhance

the functionality of the Chrome browser” (Chrome
Developer Documentation, 2016b). In fact, in Chrome OS,
extensions provide all functionality outside the browser
itself, including the bookmarks manager, PDF viewer, and
Zip file unpacker.

While extensions help Chrome OS devices mimic the
familiar functionality of fat client PCs by using a variety of
programs with the system, the differences here are that (1)
because the data is encrypted, it is presently unclear what
extra programs the suspect used with the system, and (2) it
is unlikely that all the files and data created with these
extensions are stored locally, both because of the caching
issue discussed previously and because many of these
services are web and cloud services.

Strictly speaking, there are two distinct classes of
Chrome OS apps: those that run strictly as a traditional web
application and store all data on the servers and those that
store some data locally (for the client) to allow for “offline
mode.” Some rich Internet applications and HTML5 web
applications, however, may act as both.

In this work we will refer almost exclusively to exten-
sions for Chrome OS. This is not because our approach only
works with extensions and not with apps. On the contrary,
apps are extensions that include functionality not meant to
be a part of the regular browser window. At the filesystem
level, Chrome stores all the program files for an app in the
same directory as those for extensions, and the folder is
named “Extensions”. Because Chrome OS treats apps as a
subset of extensions, for the rest of the paper we will use
the term “extensions” as a generic way of saying “exten-
sions and apps.”



Table 2
List of keys used by Chrome OS to encrypt user data. The System-Wide Key is also known as the TPM Cryptohome Key, hence the acronym. The VK consists of
the file encryption key (FEK) and file name encryption key (FNEK), both are 128 bits.

Key name Type/Bits Scope Origin Encrypted by Stored on

Storage Root Key (SRK) RSA 8192 Hardware Manufacturer TPM TPM
System-Wide Key (TPM_CHK) RSA System TPM on first boot SRK TPM
Vault Keyset Key (VKK) AES 256 User Random TPM_CHK and TK Disk
Vault Keyset (VK) AES 128 User TPM on first log-in VKK Disk
Temporary Key (TK) SHA 256 User Hash of password N/A N/A
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Disk layout

ChromeOS has awell-defined disk layout with a specific
number of partitions, each with a prescribed purpose
(Chromium Projects, 2016b). One partition is reserved for
OEM customization, in which manufacturers may store
“web pages, links, themes, etc.” Another is the user state
partition, or “stateful partition”, in which the operating
system stores all the users’ encrypted files. This partition
has the name STATE and has a mount point of /home once
booted. The remaining partitions are reserved for the
kernel, root filesystem, and partition table header and en-
tries. This last set of partitions are not normally writable by
the user, and their modificationwould interrupt the normal
boot sequence as discussed earlier.

All models of devices running Chrome OS will have the
same layout, with the possible exception of the expansion
of the STATE partition to fill a larger hard drive. Variations
on Chrome OS, including Chromium OS and CloudReady,
also use this disk layout.

Because the disk layout is always consistent, our
approach is compatible with almost any deployment of
Chrome OS. While it is certainly possible to make alter-
ations to the source code of Chromium OS and adjust its
behavior so as to foil our approach, accounting for such a
scenario is outside the scope of this work.
Anatomy of extensions

Even though it is difficult, if not impossible, to reveal
data stored on the encrypted Chrome OS filesystem,
extracting what extensions are installed is valuable for
forensic examiners to decide next analysis steps and build a
user timeline. As the goal of our project is to identify ex-
tensions installed on a Chrome OS device, we discuss
relevant technical details of extensions in this section.

All extensions are installed on a per-user basis,meaning the
installation is specific to each user. While there may be a set of
extensions installed by default or as part of a group policy,2

thesewill only be installed once the user sets up their account.
When a developer creates a new Chrome OS extension,

they package it in a CRX file, which is an archive file format
with a specific layout and set of custom headers (Chrome
Developer Documentation, 2016a). When the browser in-
stalls the extension, it validates the headers, extracts the
contents of the archive, rewrites the extension's manifest to
include the developer's public key, performs localization,
2 See https://support.google.com/chrome/a/answer/188453.
and converts all images to PNG format (without changing
the file extension).

Chrome OS installs extensions to the following upper
filesystem path:
which maps to the encrypted (lower filesystem) path:
Chrome OS stores the extension's files according to the
extension's version, so it is possible for the extension
directory to have multiple versions. However, when
Chrome updates an extension it removes the old version
after the next restart; therefore, in practice there will only
be one version directory per extension except when one
was recently updated.

Extensions do not have permission towrite in the folder
where its files are located. This is a key insight from our
analysis into the extension installation and configuration
process on Chrome OS and yields two important corol-
laries. First, none of the user-generated or user-specific data
or configurations are stored in the Extensions directory.
Instead, extensions may store such data in one or more of
the following upper filesystem paths:
Because the data stored in these locations are encrypted
and have no precise structure, we cannot use them as part
of an extension's fingerprint.

The second important corollary is that, for a given
version of an extension, the files in the installed extension
directory will be constant. These insights, coupled with the
fact that file-level metadata persists after encryption, allow
us to generate a fingerprint for an extension.

dbling: design and implementation

We leverage our analysis of the Chrome OS encryption
scheme and the Chrome OS extension installation process

https://support.google.com/chrome/a/answer/188453
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to create a framework that is able to identify extensions
installed on an encrypted Chrome OS device, without ac-
cess to the encryption keys or the ability to load a custom
OS. Our framework, which we call dbling, finds all known
Chrome OS extensions, creates fingerprints of extensions,
and uses the fingerprints to detect an installed extension on
an encrypted Chrome OS device. Our framework consists of
three phases: Enrollment, Identification, and Export. Fig. 1
depicts the three phases and their components.

Enrollment phase

Similar to the enrollment phase in biometrics, which
generates a mathematical template based on the biometric
trait, our approach enrolls extensions by taking a CRX file as
input and producing a template of the extension.

The Enrollment phase has a crawler component and a
profiler component. To identify extensions that are
installed on an encrypted Chrome OS device, we must have
prior knowledge of all possible extensions. Therefore, the
purpose of the Crawler is to obtain all possible extensions,
so that dbling can generate a template for each one.

The dbling crawler is a web crawler that finds all ex-
tensions currently listed on the Chrome Web Store,
Fig. 1. The dbling framework consists of three phases: Enrollment, Identi-
fication, and Export.

Fig. 2. More statistics from our crawler and case study. (a) Number of versions per ID
in our database, the right-most point indicates one extension has 106 dierent versio
indicates the largest family has 2,274 extensions in it. Only 10 families have a size
downloads them, and adds them to our database. Fig. 2 and
Table 3 show the statistics from running the crawler over a
six month period. In total we have downloaded 121,225
unique extensions. The number of versions we collected of
each extension ranged from 1 to 106, as shown in Fig. 2(a).
The current implementation of our crawler only downloads
free extensions.

The Profiler creates a new template for each of the new
CRX files obtained by the crawler.We adapt the concept of a
centroid to generate reliable templates for extension rep-
resentations. The concept of a centroid comes from physics
and represents the center of gravity of an object. Centroids
have several unique characteristics that make them a good
candidate for fast and reliable template generation: (C1) if
two examined objects have the same centroid, they are
almost certain to be the same object; (C2) when an object
changes a little bit, its centroid will not change a lot; (C3)
centroids are sortable, which decreases pairwise compari-
son time. Given these centroid characteristics, Chen et al.
(2014, 2015) applied centroids to detect malicious appli-
cation clones on the Android markets.

To adapt centroids for our purposes, we first transform
the native CRX package into a set of unpacked directories
and files. To accomplish this, we use a systematic approach
that accounts for the special headers and format of CRX
packages (Chrome Developer Documentation, 2016a). The
process is similar to unpacking a zip archive. Then, we
generate a 5D-FileTree from the unpacked files.

Definition 1 (5D-FT). A 5D-FT¼ (V,A) is a file treewhere
V is the set of vertices and A is the set of arcs. In a 5D-FT
each vertex has a 5D-Coordinate. A vertex in a file tree is
either a directory or a file. a(p,q)2A is an arc denoting that q
is a file or sub-directory in directory p.

Definition 2 (5D-Coordinate). A 5D-Coordinate is a 5-
dimensional vector 〈u,v,x,y,z〉. u is the number of out-
neighbor vertices that are directories, v is the number of
out-neighbor vertices that are any other type of file, x is the
directory or file's mode (permissions), y is the depth from
the root of the file tree, and z is the file type number (block
file, character device file, etc.).

To derive the 5D-FT for a version of an extension, we set
the root of this tree as the version directory and walk
through the set of unpacked files in it. All leaf vertices in the
5D-FT are either files or empty directories. By “files” we
. The left-most point indi-cates that 99,714 extensions have only one version
ns. (b) Top 100 (out of 156,487) Centroid Families by size. The left-most point
greater than 20. The 156,387 families not shown also have a size of 1.



Table 3
Statistics from running the crawler on the ChromeWeb Store. The average
new CRXs per day includes new versions of previously listed extensions as
well as new extensions. We discuss the reasons why we couldn't down-
load some CRXs in Section Technical limitations.

Crawling period 6 m/158 d
Total unique CRX IDs downloaded 121,225
Total CRXs downloaded 160,025
Total Web Store listings at start 74,253
Total Web Store listings at end 82,353
Average listing D per day 51.0
Average new CRXs per day 459.4
Average CRXs not downloaded per day 3.4%
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mean all non-directory file types, including files of an un-
known type, regular files, character and block devices,
named pipes, sockets, and symbolic links. In practice,
however, extension directories will only contain regular
files and more directories. To generate the coordinate of a
file or directory as shown in Definition 2, we execute the
stat command on the file name of each p2V and extract
the desired portions.

We define the centroid of a 5D-FT as follows:
Definition 3 (Centroid). A centroid c! of a

5D-FT is a 7-dimensional vector 〈cu,cv,cx,cy,cz,6,f〉3.

cu ¼
P

aðp;qÞ2A
ð6pupþ6quqÞ
6

, cv ¼
P

aðp;qÞ2A
ð6pvpþ6qvqÞ
6

,

cx ¼
P

aðp;qÞ2A
ð6pxpþ6qxqÞ
6

, cy ¼
P

aðp;qÞ2A
ð6pypþ6qyqÞ
6

,

cz ¼
P

aðp;qÞ2A
ð6pzpþ6qzqÞ
6

, 6 ¼ P

aðp;qÞ2A
ð6p þ6qÞ, and f ¼ jV j.

C ¼ fc0!; c1
!
;…; cn

!g is the set of all centroids.
The 6p parameter is the size of the file p, which is anal-

ogous to the weight of an object from the physics model.
Because both the filesystem and the AES encryption used in
eCryptfs use 4096 bytes as the block size, the encrypted file
size is the original file size rounded up to the nearest 4096
bytes. To calculate 6p, we compute the unencrypted file's
sizewhenencryptedanddivide it by4096 toget thenumber
of blocks occupied by the corresponding encrypted file. Not
only does this simplify our view of the file size for the
context of working with eCryptfs, but it also reduces vari-
ance in the centroids of each file.

The inclusion of f in the centroid was a direct result of
our observations while experimenting with our approach.
In our database, f ranges from 3 to 36,743.

Example: Fig. 3 shows a 5D-FT example. Vertex A is the
version directory. It has two child directories and no other
file. Itsmode is 764,whichmeans that owner can read,write
and execute, group can read and write, and others can only
read. Thedepth fromAto the versiondirectory is 0, and it is a
directory,which is type2 in extfilesystems. So its coordinate
is 〈2,0,764,0,2〉. Accordingly,we can calculate the centroid of
this tree with the coordinates of all its vertices.

Identification phase

In our framework, the Identification phase is the part of
our approach that forensic examiners will use. Because of
3 The glyph 6 is called “variant pi” or “pomega.”
this, the phase must address the three main steps of the
forensic process: acquisition, authentication, and analysis.

Themethods of acquisition (making a forensic copy) and
authentication (ensuring the copy's integrity) on a Chrome
OS device depend on what hardware the manufacturer
used for the device. With increasing frequency, Chrome OS
devices come with embedded hard drives, which make the
initial acquisition difficult.4 Assuming that the device has a
removable hard drive, typical acquisition and authentica-
tion methods that are compatible with Linux operating
systems will work on a Chrome OS device.

For the analysis step, our high-level goal is to identify
installed extensions. However, we must first identify the
extension directories in the encrypted filesystem, for which
wedo not have the unencrypted names of files or directories
or their contents. To overcome this initial challenge, we
search the encrypted filesystem to identify the candidate
graphs that represent the most likely directories to contain
user-installed extensions, generate templates for the candi-
dategraphs, andperformaone-to-manysearch todetermine
what extensions eachmaybe. Intuitively,wecannot perform
a one-to-one verification because thefiles are encrypted and
cannot self-identify as any particular extension.

To begin, we assume the examiner has already
completed the process of acquiring and authenticating a
forensic image from the evidence. The image does not need
to be of the entire disk, but can be of the partition named
STATE (Chromium Projects, 2016b), whose mount point is
/home and stores all the users’ data.5

The next step in the process is to create a graph of the
filesystem on the disk image. To do this, we mount the
image using a read-only loop device, thenwewalk through
the filesystem, creating a vertex for each inode and an arc
between parent directories and the files they contain, as
described earlier.

We create a graph representing the whole filesystem to
make sure we do not miss any relevant files. However,
given that we are only interested in a subset of these files,
we can leverage a number of identifying characteristics and
label vertices we knowcannot be part of an extension.With
these labels, we can prune irrelevant files from the graph. In
addition to the details presented in Section Anatomy of
extensions, these helpful characteristics are:

(1) All directories outside the scope of /home/.shadow

will never contain user-installed extension files.

(2) The Extensions directory will always be six di-
rectories deep from /, level a in Fig. 4.

(3) The Extensions directory will always be encrypted.

(4) The Extensions directory will always contain only
directories (i.e. no regular files), one for each installed
extension.
4 We believe that this is an interesting challenge and are researching
some possible methods to overcome this difficulty.

5 This is why Fig. 4 shows /home as the root vertex.



Fig. 3. A 5D-File Tree example and the 5D-Coordinates for its vertices.
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(5) The directory of a specific extension will always contain
only directory files at level g, one for each version of the
extension currently installed (typically 1).

(6) The extension version directory must be non-empty
since extensions always require a manifest file.

(7) The extension version directory will only contain di-
rectories and regular files, no symbolic links or other
types of files.

While generating the directory tree, we also use the
stat program on each file to get its metadata, then we
generate the 5D-Coordinate for the file and store it in
connection with the vertex corresponding to the file. Once
the graph is complete, we prune the tree by filtering out all
unnecessary files using the labels we created earlier.

Having created the pruned directory tree, we next
separate the candidate graphs from the directory tree as
shown in Fig. 4, making them proper 5D-FTs. We then
calculate the centroid for each candidate graph using the
formula in Definition 2.

With the centroids of each of the candidate graphs, the
next step is to perform the one-to-many matching for each
of them. The naïve approach would be to attempt to match
a centroid against all of the known templates. However,
this would be inefficient as the size of the known templates
grows. Therefore, we take advantage of two aspects of our
templates. First, because centroids are vectors, we can sort
them and then set a distance threshold to limit how many
neighboring centroids we will include in the pairwise
comparison. Second, the value of f must match exactly,
reducing the number of entries to consider.

Definition 4 (Centroid Family). A centroid family
CFi4C is a set of centroids such that cj

!¼ ck
!

ccj
!
; ck
!2CFi.

However, due to the coarse granularity of our cen-
troids,6 it can still be the case that centroids from multiple
extensions are the same value, either because they are
different versions of the same extension or because the
structure and metadata values are the same. We call these
centroid families.

In essence, centroid families provide a measure for the
uniqueness of the templates that we generate. Also, it is
natural that multiple extensions will correspond to the
same centroid. Consider the case of a simple extension that
6 This coarseness is due to the effect of encryption on the file metadata:
we do not have filenames or exact file sizes.
has only one file of less than 4096 bytes. In this case, all
these simple extensions will have the same centroid and be
in the same centroid family. Thus, when a candidate graph
template matches a template of this centroid family, we
cannot say for certain which extension is installed, only
that it is one of the extensions in the centroid family.

Table 4 describes statistics from our centroid families. Of
particular note is that 156,441 centroids correspond to
unique extensions, which means that only 46 centroids
correspond to multiple extensions. Fig. 2(b) investigates
the distribution of centroid families to multiple extensions.
In the worst case (the left-most bar in Fig. 2(b)), a single
centroid corresponds to 2,275 extensions. Still, even in the
worst case, this narrows down the possible extensions
installed on the Chrome OS device from the 160,025
possible extensions to just 2,275.

With the potential matches for each candidate graph
identified, the next step is to normalize the centroid vec-
tors. In our experiments, we noticed that the range of
values for each field in the centroid vectors is not the same.
For example, the valid values for a file's 5D-Coordinate for x
(the file's mode) have a range of 0e777, but z (the file type
number) has a range of 1e7. To accommodate this charac-
teristic and avoid allowing certain fields to dominate the
distance calculation in Formula (1), we normalize centroids
using the following definitions:
Fig. 4. Pruning process from the full directory tree to only a few candidate
graphs. In the figure, the vertices at level a are the potential “Extension”
directories, vertices at level b are potential extension ID directories, and
vertices at level g are potential extension version directories.



Table 4
Statistics on centroid families. Membership numbers are for
distinct extension IDs.

Total extension entries 160,025
Total centroid families 156,487
Biggest centroid family 2274
# of families >¼ 20 11
# of families ¼¼ 1 156,441

Fig. 5. A MERL file with the extensions that might match the extension
version directory from the source image.
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Definition 5 (Normalized Centroid). A Normalized
Centroid c0

!
is a 7-dimensional vector, where each compo-

nent c0 i (except for f) is calculated as c0 i ¼ ci
cni
, where ci is the

ith component of the non-normalized centroid c! and cni is
the ith component of the Normalizing Vector. The f

component is never normalized.
Definition 6 (Normalizing Vector). The Normalizing

Vector is a 6-dimensional vector cn�! ¼
〈cnu; cnv; cnx; cny; cnz; cn6〉 where each component cni of
cn�! is the maximum value for that component in the
database of collected centroids.

With the normalized centroids calculated, we can
finalize the Identification phase by ranking the matches
according to our confidence level in the matching. For a
candidate graph a and extension x, we calculate the confi-
dence level conf(a,x) as follows:

conf ða; xÞ ¼ e�d

��c0a!�c0x
!��

n
(1)

Confidence levels will be in the interval (0,1], indicating
a percentage likelihood that candidate graph a is extension
x. In the above formula, d is a weight for adjusting the rate
at which our confidence drops as the distance between c0a

�!
and c0x

�!
increases, and n ¼ jCFij given cx

!2CFi.

Export phase

In the Export phase, we store the matching and ranking
results from the Identification phase in a semi-structured
format to allow examiners to share them. This phase of
our approach is important considering the increasing
emphasis from the security community to standardize in-
telligence formats for machine-to-machine communica-
tion and other sharing purposes (Haass et al., 2015).

To export the ranked results so as to not lose their
meaning in the context of the original forensic image, we
must make a connection between the evidence artifacts
and the results in a cohesive format. To accomplish this, we
developed an XML schema that directly references the
inode information from the forensic disk image and adds
the ranking information. We call these Matching Exten-
sion Ranking List (MERL) files. Fig. 5 shows the MERL file
that lists the matching extensions with confidence levels.

Case study

We conducted a case study of dbling in a testing envi-
ronment to demonstrate its effectiveness. The target device
was an Acer C720 Chromebook, which we selected based
on its removable NGFF hard drive. The version of Chrome
OS running on the device at the time was 48.0.2564.92.
We chose 14 extensions from the “Popular Apps” cate-
gory and those from a combination of the “Productivity”
category that were listed as working offline. We used these
criteria to help simulate the scenario where the user has
installed extensions that use online services that store files
somewhere in the cloud, as well as the case where the
extension does more work locally by having more code
installed on the Chromebook.

We also constrained the case study to extensions and
versions that our crawler had downloaded. This was
necessary because of the types of extensions we were un-
able to download (see Section Technical limitations).

With the selected extensions that met our criteria, we
installed all 14 of them on the target device, took a forensic
image of the disk using dd, then ran dbling on the image.
From the MERL results, we searched for the IDs of the
installed extensions and recorded their ranks among the
matching centroids to get an idea for how accurately dbling
was able to identify the extension. Table 5 summarizes the
results from these experiments.

The t column shows howmany extensions have the same
value of f (number of files and directories) in the database.
In this case we consider different versions of an extension
separately. As the table shows, the higher the value of t, the
more difficult itwas to find the correct extension. Thismakes
sense becausewe are using f as a pre-filter when looking for
matching centroids, so the lower the value of t the fewer
centroid distances we have to calculate and rank.

From Table 5 we can see that there seems to be an in-
verse relation between f and t. Considering that many
extensions in the Chrome Web Store are simply links to a
web application, this makes sense that there are so many
extensions with f¼5, for example.

The results from our case study show that, for complex
applications, we are able to narrow down the scope of digital



Table 5
Rankings for matching the candidate graphs to the correct extension using centroids. Numbers given in ranges indicate multiple versions of the extension
matched the candidate.

Extension name Version Offline # Users f t Rank

Lucidchart Diagrams d Desktop 1.116 Y 389,087 3507 3 1e3
Marxico 1.6.1 Y 29,379 711 7 1e7
Piconion Photo Editor 1.9.0.0 Y 24,684 370 12 2
Reditr d The Best Reddit Client 0.3.3.1 Y 53,687 134 71 1
Google Hangouts 2016.120.1336.1 N 5,468,622 150 78 1e19
Advanced REST client 4.6.0 N 1,040,107 131 102 8e12
Evernote Web 1.0.8 N 3,638,599 41 580 308
TweetDeck by Twitter 3.10 N 1,584,975 15 2808 894; 1904
Any.do 3.1.1 Y 260,355 13 3894 3217
ShiftEdit 1.43 Y 159,170 6 5766 2175
Outlook.com 1.0.2 N 1,485,767 7 9259 4318; 4520
Little Alchemy 1.4.0 Y 1,518,447 5 11,768 10,328
Google Play 3.1 N 3,624,424 5 11,768 6919; 6989
Netflix 1.0.0.4 N 1,769,793 5 11,768 9630
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evidence for a forensic examiner. In the worst case, which is
in fact f¼5, we narrowed down the scope to 11,768 potential
extensions from the total of 160,025. In other cases dbling
was able to identify the extension exactly.

Limitations

The limitations of our approach fall into two main cat-
egories: forensic and technical.

Forensic limitations

In our assumptions we stated that our current approach
only works on Chrome OS devices that use removable hard
drives. The forensic community is very familiar with the
process of removing a hard drive from a device, imaging it,
and analyzing the forensic image for evidence. Less
straightforward is the process of acquiring a forensic copy of
a solid state drive soldered directly to themotherboard, such
as eMMC drives. Although there exist techniques for
accomplishing this, the current cost of the specialized
equipment, software, and training required is often prohib-
itively high. Because of this, we tested our approach on those
devices for which we could leverage common practices.

Assuming that, either in our future work or by other
researchers, an affordable acquisition method for these
types of embedded solid state drives comes to light, the rest
of our approach will still apply.

Technical limitations

Although our approach may introduce high-level prin-
ciples that could apply to other encrypted filesystems,
dbling cannot presently operate on anything other than the
discussed web thin client operating systems because of its
dependency on the disk layout discussed in Section Disk
layout and the precise location of static extension files as
discussed in Section Anatomy of extensions.

The success of our approach relies on a complete
enrollment of all extensions, as we will never be able to
detect an extension that is not enrolled. However, in prac-
tice we encountered several challenges to enrolling all
possible extensions.
Chrome seems to have some interesting mechanisms in
place for interacting with the Chrome Web Store that we
have not yet been able to reverse-engineer. For instance,
developers can opt to list their extension as being
compatible only with Chrome OS, thereby disallowing in-
stallations of that extension on the Chrome browser in an
arbitrary operating system.

To investigate this feature, we first attempted to get
around this check by changing the “User-Agent” header
of our requests to mimic Chrome OS, however we were
still not able to download the extension. Next, we
browsed the Chrome Web Store with the Firefox browser.
Many page elements were missing and it was clear
Firefox did not have all of the JavaScript files connected
with the site.

These two results indicate that Chrome and Chrome OS
have “insider knowledge” of how to interact with the
Chrome Web Store. The evaluation of compatibility is
clearly not done server-side, and the client-side browser
needs to know how to fill in the gaps from the Store's HTTP
responses. Since we aren't privy to these details, we were
unable to spoof the identity of our downloader to obtain
these extensions.

Other reasons why wewere unable to download certain
extensions are: (1) either the developer or Google removed
the extension from the Chrome Web Store, (2) the devel-
oper released the extension as a closed beta version or by
invite only (Chrome Developer Documentation, 2016b), (3)
the extension is non-free.

Although our approach helps examiners identify
which extensions the user has likely installed, dbling
cannot in its current form give any indication as to which
extensions the user actually uses or with what frequency.
This feature would be a logical evolution of dbling's
current abilities.

problem of extensions generating the same centroid
and belonging to the same centroid family impacts our
detection results. We believe that this large numbermay be
due to published extensions that are clones of either other
extensions on the Chrome OS store or very simple exten-
sions. As shown in our case study, the more complex an
extension, in both file size and number of files, the more
likely it is to be unique. Furthermore, we argue that it is a
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natural result of the loss of data and metadata from the
encryption of the filesystem.

Related work

Garfinkel (2009) first introduced DFXML to the forensics
community. We attempted to incorporate DFXML into our
approach by referencing fileobject nodes from the MERL
files instead of the inode number. However, as noted by
Garfinkel et al. (2012) (and later reiterated by Nelson (2012)),
a tool cannot assume “a unique path for each object in [the
DFXML of] a file system”. We learned this the hard way
when, after creating the 5D-FT from the DFXML, the dupli-
cate entries caused all sorts of issues. We finally concluded
that walking the filesystem ourselves was a more straight-
forward approach than attempting to sanitize the DFXML.
Hopefully in the future we can overcome this issue.

Chrome OS uses ext4 as the underlying filesystem,
which is also adopted by the Android and Tizen operating
systems as well. Fairbanks (2012) and Fairbanks et al.
(2010) presented thorough analyses of ext4 in general
for digital forensics. Kim et al. (2012) studied how to use
the ext4 filesystem journal logs to extract what files users
accessed and how to recover deleted files. Eo et al. (2015)
examined how to recover deleted files in Tizen. Corbin
(2014) studied performing forensic analyses on Chrome-
books, inwhich they assumed the examiner is able to log in
to the device before trying to run some simple commands
on the system, like ls, lsof, grep, etc. However, all the
aforementioned approaches assume the filesystem is
unencrypted, either because it is stored in plaintext (Kim
et al., 2012; Eo et al., 2015) or decrypted before analysis
(Corbin, 2014). This assumption dramatically limits forensic
analysts’ ability when they can only acquire images of
encrypted filesystems.

Other researchers have studied the impact of full disk
encryption on digital forensics (Casey and Stellatos, 2008).
Efforts that tried to do forensics on encrypted systems all
explored ways to recover the encryption keys from memory
or other places (Altheide et al., 2008; Halderman et al., 2009).
In these approaches, the success of forensic analysis totally
relies on the success of extracting the keys. Little literature
exists on directly doing forensics on the encrypted fil-
esystems of Chrome OS or any other type of web thin clients.

To overcome the obstacles inherent to encrypted fil-
esystems, our work follows the line of metadata analysis for
digital forensics. Buchholz and Spafford (2004) discussed
not only what types of information are available by
analyzing metadata in FAT and NTFS, they also outlined
what new types of metadata would aid forensic in-
vestigations. Olivier (2009) leveraged metadata analysis to
perform forensics on databases. Castiglione et al. (2007)
used document metadata to retrieve forensic information
from Microsoft Office documents. Thorpe et al. (2012)
examined cloud log metadata for forensic analysis of vir-
tual machines and operating systems running in clouds.

Conclusion

It is clear that web thin clients are an exciting and
expanding computing platform. They offer significant
benefits for users, allowing them to leverage the power of
cloud computing in an inexpensive device. However, this
new class of devices brings interesting and unique forensic
challenges, particularly in the case of ChromeOS, where the
filesystem is encrypted by default.

By using file metadata that is preserved after encryp-
tion, we were able to extract forensic evidence without
breaking the encryption or loading a custom operating
system. Our approach significantly helped narrow down
analysis space on the forensic image, which will eventually
support both logical and sparse acquisitions. Furthermore,
we believe that this is a significant first step toward
comprehensive web thin client forensics.

As part of our ongoing efforts to improve dbling, we are
working on a suite of tools for large-scale evaluation of our
approach on all of the extensions in the Chrome Web Store.
This includes trying other techniques (e.g. using SSLMITM) to
understand the request format for downloading extensions
so we can obtain those that were previously inaccessible.
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