

CSE 469: Computer and Network Forensics

Topic 8: Cloud and Web Forensics

Dr. Mike Mabey | Spring 2019 CSE 469: Computer and Network Forensics

What is "The Cloud"?

- "A computing storage system that provides on-demand network access for multiple users and can allocate storage to users to keep up with changes in their needs."
 - Paraphrasing of NIST SP 800-145 (from the textbook).
- Layer of abstraction for computer hardware, operating systems, and software.
 - Abstracting these away means you don't have to worry about the details as much.

History of the Cloud

- **1961**: Professor John McCarthy of MIT proposed selling computing resources and software as a service like public utilities.
- **1963**: Dr. J. C. R. Licklider proposed interconnecting programs and data to share resources.
- **1968**: ARPA Program Plan No. 723, Resource Sharing Computer Networks, initiated. Developed into ARPANET, the predecessor to the Internet.
- **1999**: Salesforce.com developed CRM Web service, which led the way to the cloud.
- **2002**: Amazon created Amazon Mechanical Turk, providing storage, computations, and human intelligence.
- **2006**: Amazon launches its Elastic Compute Cloud (EC2) service.
- **2009**: Web 2.0 ushers in many other cloud service providers.

Cloud Service Levels

- Software as a Service (Saas)
 - Applications are delivered via the Internet, such as Google Docs.
 - Target is the end user of an application.

• Platform as a Service (Paas)

- OS installed on a cloud server, users can install their software and tools.
- Target is the application developer.
- Infrastructure as a Service (IaaS)
 - Customer rents hardware, installs OS of choice. Highly configurable network options. Tremendous scaling ability.
 - Target is the system administrator.

Cloud Deployment Methods

- Public Cloud:
 - Cloud services are available to anyone.
- Private Cloud:
 - Limited-access, typically on-premises.
 - Uses a cloud architecture such as OpenStack.
- Community Cloud:
 - A way to bring people together for a specific purpose.
- Hybrid Cloud:
 - A public and private cloud that talk to each other.
 - Gives companies more control over data and services.

Cyber Crimes Using the Cloud

- Cloud assisted:
 - Using cloud VMs as bots or Command and control servers
 - Data breach (tool)
- Cloud targeted:
 - Cyber attack against a cloud
 - Policy violations in accessing a cloud
 - Data breach (victim)
- Cloud incidental:
 - Fraud
 - Data breach (storage)

A Framework for Web Environment Forensics

Traditional Program vs. Web App

Unique Web Forensic Challenges

- **CO.** Complying with the Rule of Completeness
- C1. Associating a suspect with online personas
- C2. Gaining access to the evidence stored online
- C3. Contextualizing evidence in terms of content (*thematic context*) and time (*temporal context*)
- C4. Integrating tools to perform advanced analyses

F1. Evidence Discovery and Acquisition

- Connect suspect and persona (C1)
- Gain access to evidence from web services (C2)*
- F2. Analysis Space Reduction
 - Filter irrelevant artifacts (C3 Thematic Context)*
- F3. Timeline Reconstruction
 - Reconstruct timeline (C3 Temporal Context)*
- F4. Structured Formats
 - Bridges the other three components
 - Facilitate tool interoperability (C4)
 - * Also addresses **CO**: Rule of Completeness

CO : Rule of Completeness	•	•	•	0
C1 : Associating Personas	•	0	0	0
C2 : Evidence Access	•	0	0	0
C3: Relevant Context	0	•	•	0
C4: Tool Integration	0	0	0	٠

F1: Evidence Discovery and Acquisition

- Examiner's Process:
 - Discovery
 - Search storage of devices in custody for service credentials
 - Derive the corresponding service
 - Acquisition
 - Devise means to acquire data from service, e.g. use available APIs

F1: Evidence Discovery and Acquisition

Challenges:

- Volume of data
- Boundaries of data are ambiguous
 - Geographically
 - Ownership
- User may have many accounts
 - Difficult to discover and acquire all data
 - Harder to determine relevance (F2)

F2: Analysis Space Reduction

- Examiner's Process:
 - Classification
 - Place labels on artifacts indicating subject or theme

- Filter for relevant labels $oldsymbol{\nabla}$
- Identification
 - Determine what the evidence is
 - Helpful when evidence is encrypted

F2: Analysis Space Reduction

Challenges:

- False positives (labeling artifact as relevant when not)
 - Sub-optimal reduction
- False negatives
 - Obscures relevant data from examiner, altering outcome of investigation
- Exculpatory evidence (suggesting innocence)
 - Prone to false negatives
 - Difficult to identify

F1 Evidence Discovery

F3

Timeline

leconstructio

F3: Timeline Reconstruction

- Examiner's Process:
 - Collect and combine available time data
 - Requires **F1** tools and methods
 - Remove irrelevant data
 - Extra metadata
 - Data outside timeframe of interest
 - Establish relationship between entries
 - Chronological ordering

F3: Timeline Reconstruction

Challenges:

- Incorporation into existing tools
 - Extra metadata from web services
- Large variety of types and formats of logs
 - IoT devices
- Reconcile time data from different sources, time zones
 - Cannot assume UTC

F4: Structured Formats

- Examiner's Process:
 - Examiners should not have to work directly with structured storage formats

F4: Structured Formats

Challenges:

- Three requirements for structured formats:
 - Precise representation of original data
 - Method of verifying data conforms to specification
 - Specification must be published
- Trade-offs
 - Supporting different platforms
 - Keeping specification concise

Framework: Summary

- Directly addresses the unique forensic challenges (CO-C4)
- Gives examiners a way to approach web-based evidence
- Provides examiners with:
 - 1. Previously unknown data
 - 2. Relevant context
 - Non-sequential structure
 - Fits within existing forensic processes

Considerations for Forensic Investigations in the Cloud

Legal Challenges

- Service Level Agreements (SLAs):
 - Among other things, these state who is authorized to access data and what the limitations are in conducting acquisitions for an investigation.
- Jurisdiction issues:
 - Perpetrator, victim, and instrument of the crime can all be in **different locations** with **different laws** applying to each in **different ways**.
- Accessibility:
 - Search Warrant: Used only in criminal cases, requested by law enforcement with probable cause of a crime. Used to seize hardware.
 - **Subpoenas and Court Orders**: Used when **information** (or **data**) is needed, not the original equipment.

Technical Challenges (1)

- Cloud architectures vary:
 - No two providers are alike.
- Data collection and authentication:
 - Remote acquisitions are hard.
 - Virtual network switches == duplicate IPs, IP spaces.
 - Encrypted data (now common) requires cooperation of cloud provider to access the data.
- Analysis of cloud forensic data:
 - Verifying integrity, reconstructing timeline is even harder.

Technical Challenges (2)

• Anti-forensics:

- Myriad ways for criminals to undermine evidence collection and analysis.
- Incident first responders:
 - Will they be cooperative, well-trained, and capable?
- Role management:
 - Who has what roles (owner, user, etc.)?
- Standards and training:
 - Never-ending struggle to keep up with current technologies and approaches.

- Cloud Service Provider (CSP):
 - Requires detailed knowledge of the cloud's topology, policies, data storage methods, and devices available.
- Cloud customers:
 - Data may be stored on computers, mobile devices, in web browser cache, etc.
- Locally-stored cloud data:
 - Popular cloud storage services have sync clients that leave artifacts even when uninstalled.
 - May include info about files that were never synced.

Each of the layers of abstraction that make cloud computing so awesome for the rest of the world make a forensic examiner's job WAY more difficult.